K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
17 tháng 5 2019

Ta có: \(\frac{a^2}{b-1}+\frac{b^2}{c-1}+\frac{c^2}{a-1}\ge\frac{\left(a+b+c\right)^2}{a+b+c-3}\)

Vậy ta chỉ cần chứng minh \(\frac{\left(a+b+c\right)^2}{a+b+c-3}\ge12\) với \(a;b;c>1\)

Thật vậy, do \(a;b;c>1\Rightarrow a+b+c-3>0\) biến đổi tương đương ta có:

\(\Leftrightarrow\left(a+b+c\right)^2\ge12\left(a+b+c-3\right)\)

\(\Leftrightarrow\left(a+b+c\right)^2-12\left(a+b+c\right)+36\ge0\)

\(\Leftrightarrow\left(a+b+c-6\right)^2\ge0\) (luôn đúng)

BĐT được chứng minh, dấu "=" xảy ra khi \(a=b=c=2\)

26 tháng 9 2016

\(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=\frac{\left(xy+yz+zx\right)^2}{x^2y^2z^2}\)(1) với x+y+z=0. Bạn quy đồng vế trái (1) dc \(\frac{x^2y^2+y^2z^2+z^2x^2}{x^2y^2z^2}=\frac{\left(xy+yz+zx\right)^2-2\left(x+y+z\right)xyz}{x^2y^2z^2}\)

17 tháng 10 2018

Ta chứng minh:

\(\frac{1}{1-3a}\ge256a^3\)

\(\Leftrightarrow\left(4x-1\right)^2\left(48x^2+8x+1\right)\ge0\)đúng

\(\Rightarrow VT\ge256a^3+256b^3+256c^3=\frac{256.3}{64}=12\) 

Bài 1 : Cho hai số x,y thỏa mãn đẳng thức :\(\left(x+\sqrt{x^2+2011}\right)\times\left(y+\sqrt{y^2+2011}\right)=2011\)TÌm x+y .Bài 2 : Cho x>0,y>0 và \(x+y\ge6\). Tìm giá trị nhỏ nhất của biểu thức :\(P=3x+2y+\frac{6}{x}+\frac{8}{y}\)Bài 3 : Cho các số thực x,a,b,c thay đổi , thỏa mạn hệ :\(\hept{\begin{cases}x+a++b+c=7\\x^2+a^2+b^2+c^2=13\end{cases}}\)TÌm giá trị lớn nhất và nhỏ nhất của x .Bài 4 : Cho các...
Đọc tiếp

Bài 1 : Cho hai số x,y thỏa mãn đẳng thức :

\(\left(x+\sqrt{x^2+2011}\right)\times\left(y+\sqrt{y^2+2011}\right)=2011\)TÌm x+y .

Bài 2 : Cho x>0,y>0 và \(x+y\ge6\). Tìm giá trị nhỏ nhất của biểu thức :

\(P=3x+2y+\frac{6}{x}+\frac{8}{y}\)

Bài 3 : Cho các số thực x,a,b,c thay đổi , thỏa mạn hệ :

\(\hept{\begin{cases}x+a++b+c=7\\x^2+a^2+b^2+c^2=13\end{cases}}\)TÌm giá trị lớn nhất và nhỏ nhất của x .

Bài 4 : Cho các số dương a,b,c . Chứng minh :

\(1< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< 2\)

Bài 5: Cho x,y là hai số thực thỏa mãn :(x+y)2+7.(x+y)+y2+10=0 . Tìm giá trị lớn nhất và nhỏ nhất của biểu thức A=x+y+1

Bài 6: Tìm giá trị nhỏ nhất biểu thức : \(P=\frac{x^4+2x^2+2}{x^2+1}\)

Bài 7 : CHo các số dương a,b,c . Chứng minh bất đẳng thức :

\(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\ge4\times\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\)

 

6
3 tháng 11 2019

neu de bai bai 1 la tinh x+y thi mik lam cho

4 tháng 11 2019

đăng từng này thì ai làm cho 

7 tháng 7 2017

lơn hơn 2 chứ Câu hỏi của Michelle Nguyen - Toán lớp 9 - Học toán với OnlineMath

20 tháng 11 2017

Bạn vào câu hỏi tương tự tham khảo nhé!^_^

Sorry vì không giúp được

20 tháng 11 2017

điều kiện của a;b;c là gì

13 tháng 10 2019

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)

=> \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\left(a+b+c\right)\left(\frac{9}{a+b+c}\right)=9\left(dpcm\right)\)

13 tháng 10 2019

\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=3+\frac{a}{b}+\frac{c}{b}+\frac{b}{a}+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}.\text{ÁP DỤNG BĐT CÔ SI TA ĐƯỢC:}\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)\ge3+2\sqrt{\frac{a}{b}.\frac{b}{a}}+2\sqrt{\frac{bc}{bc}}+2\sqrt{\frac{c}{a}.\frac{a}{c}}=3+2+2+2=9\)