\(\frac{1+\sqrt{a}}{1+\sqrt{b}}+...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 9 2016

\(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=\frac{\left(xy+yz+zx\right)^2}{x^2y^2z^2}\)(1) với x+y+z=0. Bạn quy đồng vế trái (1) dc \(\frac{x^2y^2+y^2z^2+z^2x^2}{x^2y^2z^2}=\frac{\left(xy+yz+zx\right)^2-2\left(x+y+z\right)xyz}{x^2y^2z^2}\)

7 tháng 7 2017

lơn hơn 2 chứ Câu hỏi của Michelle Nguyen - Toán lớp 9 - Học toán với OnlineMath

11 tháng 10 2018

Theo BĐT cô- si, ta có:

\(\sqrt{1+a^2}+\sqrt{1+b^2}\ge2.\sqrt[4]{\left(1+a^2\right)\left(b^2+1\right)}\)

Áp dụng BĐT Bu- nhi-a cốp-xki , ta có:

\(\left(1+a^2\right)\left(b^2+1\right)\ge\left(a+b\right)^2\)

\(\Rightarrow2.\sqrt[4]{\left(1+a^2\right)\left(b^2+1\right)}\ge2\sqrt{a+b}\)

hay:  \(\sqrt{1+a^2}+\sqrt{1+b^2}\ge2\sqrt{a+b}\)

Tương tự:

\(\sqrt{1+b^2}+\sqrt{1+c^2}\ge2\sqrt{b+c}\)

\(\sqrt{1+a^2}+\sqrt{1+c^2}\ge2\sqrt{a+c}\)

Cộng từng vế, ta được:

\(\sqrt{1+a^2}+\sqrt{1+b^2}+\sqrt{1+c^2}\ge\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\)

12 tháng 10 2018

tự hỏi tự trả lời hử :)

1 tháng 1 2020

bài này hay đấy

Áp dụng BĐT Cô-si cho 3 số không âm, ta có :

\(\frac{1+\sqrt{a}}{1+\sqrt{b}}+\frac{1+\sqrt{b}}{1+\sqrt{c}}+\frac{1+\sqrt{c}}{1+\sqrt{a}}\ge3\sqrt[3]{\frac{1+\sqrt{a}}{1+\sqrt{b}}.\frac{1+\sqrt{b}}{1+\sqrt{c}}.\frac{1+\sqrt{c}}{1+\sqrt{a}}}=3\)

Chứng minh \(\frac{1+\sqrt{a}}{1+\sqrt{b}}+\frac{1+\sqrt{b}}{1+\sqrt{c}}+\frac{1+\sqrt{c}}{1+\sqrt{a}}\le3+a+b+c\)( 1 )

đặt \(\sqrt{a}=x;\sqrt{b}=y;\sqrt{c}=z\)( x,y,z \(\ge\)0 )

do a,b,c là số nguyên 

Nếu a = b = c = 0 thì x = y = z = 0 nên ( 1 ) đúng

Nếu a,b,c không đồng thời bằng 0 \(\Rightarrow\)x+ y + z \(\ge\)1

Ta có : VT ( 1 ) 

\(\Leftrightarrow\frac{\left(1+x\right)\left(1+y\right)-\left(1+x\right)y}{1+y}+\frac{\left(1+y\right)\left(1+z\right)-\left(1+y\right)z}{1+z}+\frac{\left(1+z\right)\left(1+x\right)-\left(1+z\right)x}{1+z}\)

\(=3+x+y+z-\left[\frac{\left(1+x\right)y}{1+y}+\frac{\left(1+y\right)z}{1+z}+\frac{\left(1+z\right)x}{1+x}\right]\)

\(\le3+x+y+z-\frac{\left(1+x\right)y+\left(1+y\right)z+\left(1+z\right)x}{1+x+y+z}=3+x+y+z-\frac{x+y+z+xy+yz+xz}{1+x+y+z}\)

\(=3+\frac{x^2+y^2+z^2+xy+yz+xz}{1+x+y+z}\le3+x^2+y^2+z^2\)

Cần chứng minh : \(\frac{x^2+y^2+z^2+xy+yz+xz}{1+x+y+z}\le x^2+y^2+z^2\)

\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2\right)\ge xy+yz+xz\)

Mà \(\left(x+y+z\right)\left(x^2+y^2+z^2\right)\ge1.\left(x^2+y^2+z^2\right)\ge xy+yz+xz\)

suy ra đpcm

20 tháng 5 2018

Nhon ~~ Xin Chào Bạn Nha >< Hiện Giờ Bên Tụi Mk đang có 1 cuộc thi đó là cuộc thi ảnh đẹp nhoa >< Nếu Bạn mún tham gia Hãy Chọn 1 Tấm hik Đẹp Nhất của mk Và Đưa Link ảnh đó cho mk . sau ngày hum nay 20/5 -> đến Ngày 22 / 5 Mk sẽ ra Kết qả và gửi cho Bạn / 

giải nhất sẽ đc 3 mỗi ngày , thời hạn sẽ kết thúc sau khi hết 1 tuần 

giải nhì sẽ được 2 mỗi ngày . kết thúc sau 4 ngày 

giải 3 sẽ đc mk kb +   1  

.>< Thanh Kìu nhìu nhoa >< 

21 tháng 3 2019

Duyên Nguyễn : Ảnh về chủ đề j ? Hay ảnh tự do ?