Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt a+b-c=x
b+c-a=y
c+a-b=z
\(A=\frac{ab}{a+b-c}+\frac{bc}{b+c-a}+\frac{ca}{c+a-b}\)
Ta có a;b;c là độ dài 3 cạnh tam giác nên x;y;z>0
\(4A=\frac{2a.2b}{x}+\frac{2b.2c}{y}+\frac{2c.2a}{z}\)
\(=\frac{\left(x+z\right)\left(x+y\right)}{x}+\frac{\left(x+y\right)\left(y+z\right)}{y}+\frac{\left(x+z\right)\left(y+z\right)}{z}\)
\(=3\left(x+y+z\right)+\left(\frac{yz}{x}+\frac{zx}{y}+\frac{xy}{z}\right)\)
\(\ge3\left(x+y+z\right)+\frac{\left(x+y+z\right)xyz}{xyz}\)\(=4\left(x+y+z\right)=4\left(a+b+c\right)\) (Do x;y;z>0)
\(\Rightarrow A\ge a+b+c\)
1, Áp dụng bất đẳng thức Cô-si cho 2 số dương ta được
\(\frac{bc}{a}+\frac{ab}{c}\ge2\sqrt{\frac{bc}{a}.\frac{ab}{c}}=2b\)
\(\frac{ac}{b}+\frac{ab}{c}\ge2\sqrt{\frac{ac}{b}.\frac{ab}{c}}=2a\)
\(\frac{ac}{b}+\frac{bc}{a}\ge2\sqrt{\frac{ac}{b}.\frac{bc}{a}}=2c\)
Cộng từng vế vào ta được
\(2\left(\frac{bc}{a}+\frac{ac}{b}+\frac{ab}{c}\right)\ge2\left(a+b+c\right)\)
\(\Leftrightarrow\frac{bc}{a}+\frac{ac}{b}+\frac{ab}{c}\ge a+b+c\)
Dấu "=" khi a = b = c
2,Vì a,b,c là 3 cạnh của tam giác nên a,b,c > 0
Ta có các bđt quen thuộc sau : \(\frac{m}{n}>\frac{m}{m+n}\)và \(\frac{m}{n}< \frac{m+m}{m+n}\)
\(\Rightarrow\frac{m}{m+n}< \frac{m}{n}< \frac{m+m}{m+n}\). Áp dụng bđt này ta được
\(\frac{a}{a+b+c}< \frac{a}{b+c}< \frac{a+a}{a+b+c}\)
\(\frac{b}{a+b+c}< \frac{b}{a+b+c}< \frac{b+b}{a+b+c}\)
\(\frac{c}{a+b+c}< \frac{c}{a+b}< \frac{c+c}{a+b+c}\)
Cộng 3 bđt trên lại ta được đpcm
hmm..
Đặt \(\left(x;y;z\right)=\left(a+b-c;b+c-a;c+a-b\right)\)
\(\Leftrightarrow\hept{\begin{cases}a=\frac{x+z}{2}\\b=\frac{x+y}{2}\\c=\frac{y+z}{2}\end{cases}}\)
Bất đẳng thức cần chứng minh tương đương với:
\(\frac{\left(x+y\right)\left(x+z\right)}{4x}+\frac{\left(y+z\right)\left(x+y\right)}{4y}+\frac{\left(z+x\right)\left(z+y\right)}{4z}\ge x+y+z\)
Ta có:\(\frac{\left(x+y\right)\left(x+z\right)}{4x}+\frac{\left(y+z\right)\left(x+y\right)}{4y}+\frac{\left(z+x\right)\left(z+y\right)}{4z}\)
\(=\frac{x^2+xy+xz+yz}{4x}+\frac{xy+yz+y^2+zx}{4y}+\frac{zx+zy+z^2+xy}{4z}\)
\(=\frac{3\left(x+y+z\right)}{4}+\frac{1}{4}\left(\frac{yz}{x}+\frac{zx}{y}+\frac{xy}{z}\right)\)\(=\frac{3}{4}\left(x+y+z\right)+\frac{1}{4}\left(\frac{y^2z^2}{xyz}+\frac{z^2x^2}{xyz}+\frac{x^2y^2}{xyz}\right)\)
\(\ge\frac{3}{4}\left(x+y+z\right)+\frac{1}{4}\left[\frac{\left(xy+yz+zx\right)^2}{3xyz}\right]\)\(\ge\frac{3}{4}\left(x+y+z\right)+\frac{1}{4}\left[\frac{3xyz\left(x+y+z\right)}{3xyz}\right]\)
\(=x+y+z\)
Bất đẳng thức đã được chứng minh.
Dấu "=" xảy ra khi \(x=y=z\) hay \(a=b=c\)
cho a,b,c là 3 cạnh của tam giác
CMR:\(\frac{ab}{a+b-c}+\frac{bc}{-a+b+c}+\frac{ac}{a-b+c}\ge a+b+c\)
Tự nhiên lục được cái này :'(
3. Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :
\(\frac{1}{a+b-c}+\frac{1}{b+c-a}\ge\frac{\left(1+1\right)^2}{a+b-c+b+c-a}=\frac{4}{2b}=\frac{2}{b}\)
\(\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{\left(1+1\right)^2}{b+c-a+c+a-b}=\frac{4}{2c}=\frac{2}{c}\)
\(\frac{1}{a+b-c}+\frac{1}{c+a-b}\ge\frac{\left(1+1\right)^2}{a+b-c+c+a-b}=\frac{4}{2a}=\frac{2}{a}\)
Cộng theo vế ta có điều phải chứng minh
Đẳng thức xảy ra <=> a = b = c
Đặt a+b-c=x
-a+b+c=y
a-b+c=z
=> x+y+z=a+b+c
=>x+y=2b
y+z=2c
x+z=2a
nhân 4 cả hai vế rồi tách ra là đc nha bạn
Dấu ''='' xảy ra khi và chỉ khi a=b=c
Đặt a+b‐c=x
‐a+b+c=y
a‐b+c=z
=> x+y+z=a+b+c
=>x+y=2b
y+z=2c
x+z=2a
nhân 4 cả hai vế rồi tách ra là đc nha bạn
Dấu ''='' xảy ra khi và chỉ khi a=b=c
giả sử a+b+c=k>0; đặt a=kx; b=ky; c=kz => x;y;z>0 và x+y+z=1
khi đó P=k\(\left[\frac{k\left(3x-y\right)}{k^2\left(x^2+xy\right)}+\frac{k\left(3y-z\right)}{k^2\left(y^2+yz\right)}+\frac{k\left(3z-x\right)}{k^2\left(z^2+zx\right)}\right]=\frac{3x-y}{x^2+xy}+\frac{3y-z}{x^2+xy}+\frac{3z-x}{z^2+zx}\)
\(=\frac{4x-\left(x+y\right)}{x\left(x+y\right)}+\frac{4y-\left(y+z\right)}{y\left(y+z\right)}+\frac{4z-\left(z+x\right)}{z\left(z+x\right)}=\frac{4}{x+y}-\frac{1}{x}+\frac{4}{y+z}-\frac{1}{y}+\frac{4}{z+x}-\frac{1}{z}\)
\(=\frac{4}{1-z}-\frac{1}{x}+\frac{1}{1-x}+\frac{1}{y}+\frac{1}{1-y}+\frac{1}{z}=\frac{5x-1}{x-x^2}+\frac{5y-1}{y-y^2}+\frac{5z-1}{z-z^2}\)
do a,b,c là 3 cạnh của 1 tam giác => b+c>a =>y+z>x => 1-x>x
=> x<1/2 tức là a\(\in\left(0;\frac{1}{2}\right)\)tương tự ta cũng có: \(y;z\in\left(0;\frac{1}{2}\right)\)
ta sẽ chứng minh \(\frac{5t-1}{t-t^2}\le18t-3\)(*) đúng với mọi \(\in\left(0;\frac{1}{2}\right)\)
thật vậy (*) \(\Leftrightarrow\frac{5t-1}{t-t^2}-18t+3\le0\Leftrightarrow\frac{18t-21t^2+8t-1}{t-t^2}\le0\Leftrightarrow\frac{\left(2t-1\right)\left(3t-1\right)^2}{t\left(t-1\right)}\le0\)(**)
(**) hiển nhiên đúng với mọi \(t\in\left(0;\frac{1}{2}\right)\)do đó (*) đúng với mọi \(t\in\left(0;\frac{1}{2}\right)\)
áp dụng (*) ta được \(P\le18x-3+18y-3=18\left(x+y+z\right)-9=9\)
dấu "=" xảy ra <=> x=y=z=1/3 <=> a=b=c
@Hai Ngox: Sao phải giả sử a + b + c = k > 0 vậy bạn? Vì a,b,c là độ dài 3 cạnh của tam giác thì đó là hiển nhiên.
Ngoài ra:
Nó tương đương với \(\Sigma c^2\left(b+c\right)\left(a+c\right)\left(a-b\right)^2\ge0\) (1)
Hoặc \(\Sigma a^4\left(b-c\right)^2+\frac{1}{3}\left(ab+bc+ca\right)\Sigma\left(2ab-bc-ca\right)^2\ge0\) (2)
Nhận xét. Phân tích (2) cho ta thấy, bất đẳng thức \(\left(a+b+c\right)\left(\frac{3a-b}{a^2+ab}+\frac{3b-c}{b^2+bc}+\frac{3c-a}{c^2+ca}\right)\le9\)
đúng với mọi a, b, c là số thực thỏa mãn \(ab+bc+ca\ge0.\)
Đặt \(a+b-c=x;b+c-a=y;c+a-b=z\)
\(\Rightarrow a=\frac{z+x}{2};b=\frac{x+y}{2};c=\frac{y+z}{2}\)
Bài toán cần chứng minh:
\(\frac{\left(x+y\right)\left(z+x\right)}{4x}+\frac{\left(x+y\right)\left(y+z\right)}{4y}+\frac{\left(y+z\right)\left(z+x\right)}{4z}\ge x+y+z\)
Ta có:
\(VT=\frac{3}{4}\left(x+y+z\right)+\frac{1}{4}\left(\frac{xy}{z}+\frac{yz}{x}+\frac{zx}{y}\right)\)
\(=\frac{3}{4}\left(x+y+z\right)+\frac{1}{4xyz}\left(x^2y^2+y^2z^2+z^2x^2\right)\)
\(\ge\frac{3}{4}\left(x+y+z\right)+\frac{1}{4xyz}\left(x+y+z\right)xyz\)
\(=x+y+z=VP\)