Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xí câu 1:))
Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :
\(\frac{x^2}{y-1}+\frac{y^2}{x-1}\ge\frac{\left(x+y\right)^2}{x+y-2}\)(1)
Đặt a = x + y - 2 => a > 0 ( vì x,y > 1 )
Khi đó \(\left(1\right)=\frac{\left(a+2\right)^2}{a}=\frac{a^2+4a+4}{a}=\left(a+\frac{4}{a}\right)+4\ge2\sqrt{a\cdot\frac{4}{a}}+4=8\)( AM-GM )
Vậy ta có đpcm
Đẳng thức xảy ra <=> a=2 => x=y=2
\(\left\{{}\begin{matrix}ab+ac+bc+bd+cd+da\ge4\sqrt[6]{ab.ac.bc.bd.cd.da}=6.\sqrt{abcd}=6\\a^2+b^2+c^2+d^2\ge4\sqrt[4]{a^2b^2c^2d^2}=4.\sqrt{abcd}=4\end{matrix}\right.\) \(\begin{matrix}\left(1\right)\\\left(2\right)\end{matrix}\)
(1) cộng (2) => dpcm
Ta có:
\(\frac{1}{a^2+1}+\frac{1}{b^2+1}+\frac{1}{c^2+1}+\frac{1}{d^2+1}\)
= \(\left(1-\frac{a^2}{a^2+1}\right)+\left(1-\frac{b^2}{b^2+1}\right)+\left(1-\frac{c^2}{c^2+1}\right)+\left(1-\frac{d^2}{d^2+1}\right)\)
= \(4-\left(\frac{a^2}{a^2+1}+\frac{b^2}{b^2+1}+\frac{c^2}{c^2+1}+\frac{d^2}{d^2+1}\right)\)
Áp dụng Cô - si:
\(a^2+1\ge2\sqrt{a^2.1}=2a\) <=> \(\frac{a^2}{a^2+1}\le\frac{a}{2}\)
Tương tự => \(\left\{{}\begin{matrix}\frac{b^2}{b^2+1}\le\frac{b}{2}\\\frac{c^2}{c^2+1}\le\frac{c}{2}\\\frac{d^2}{d^2+1}\le\frac{d}{2}\end{matrix}\right.\)
<=> \(4-\left(\frac{a^2}{a^2+1}+\frac{b^2}{b^2+1}+\frac{c^2}{c^2+1}+\frac{d^2}{d^2+1}\right)\)
\(\ge4-\frac{a+b+c+d}{2}=2\)
+ \(\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}>\frac{a}{a+b+c+d}+\frac{b}{a+b+c+d}+\frac{c}{a+b+c+d}+\frac{d}{a+b+c+d}=1\) (1)
+ Ta c/m : Nếu \(\frac{m}{n}< 1\) thì \(\frac{m}{n}< \frac{m+x}{n+x}\)
+ Ta có : \(\frac{m}{n}< 1\Leftrightarrow m< n\Leftrightarrow mx< nx\) ( m,n,x > 0 )
\(\Leftrightarrow mn+mx< mn+nx\Leftrightarrow m\left(n+x\right)< n\left(m+x\right)\) \(\Leftrightarrow\frac{m}{n}< \frac{m+x}{n+x}\)
Áp dụng kết quả trên :
\(\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}< \frac{a+d}{a+b+c+d}+\frac{a+b}{a+b+c+d}+\frac{b+c}{a+b+c+d}+\frac{c+d}{a+b+c+d}\) \(=\frac{2\left(a+b+c+d\right)}{a+b+c+d}=2\) (2)
+ Từ (1) và (2) => đpcm
Áp dụng BĐT Svacxo ta có :
\(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+d}+\frac{d^2}{d+a}\ge\frac{\left(a+b+c+d\right)^2}{2\left(a+b+c+d\right)}=\frac{a+b+c+d}{2}=\frac{1}{2}\)
( Do \(a+b+c+d=1\) )
Vậy ta có điều phải chứng minh.
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=d=\frac{1}{4}\)