\(b=\frac{a+c}{2};c=\frac{2bd}{b+d}\)

Chứng tỏ...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 9 2016

2b = a+ c(1)

2bd = bc + bd

<=> ( a+c )d= bc+ cd

<=>  ad +cd= bc+ cd

<=> ad = bc

<=>  a/b = c/d (đpcm)

13 tháng 5 2017

Từ c(b+d)=2bd=>bc+cd=2bd

Ta lại có             a+c =2b

Lấy vế chia vế được :\(\frac{bc+cd}{a+c}=\frac{2bd}{2b}=\)\(d\)

=>bc+cd=ad+cd=>bc=ad=>\(\frac{a}{b}=\frac{c}{d}\)

+ , \(\frac{a}{b}=\frac{c}{d}\)\(\frac{a+c}{b+d}\)=> \(\left(\frac{a+c}{b+d}\right)^8=\left(\frac{a}{b}\right)^8\)\(\frac{a^8}{b^8}\) (1)

\(\frac{a}{b}=\frac{c}{d}\)=> \(\left(\frac{a}{b}\right)^8=\left(\frac{c}{d}\right)^8\)<=>\(\frac{a^8}{b^8}=\frac{c^8}{d^8}\)=\(\frac{a^8+c^8}{b^8+d^8}\) (2)

Từ (1) và (2) ta suy ra : \(\left(\frac{a+c}{b+d}\right)^8=\frac{a^8+c^8}{b^8+d^8}\) ( đpcm)

15 tháng 2 2020

Đặt  \(S=\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}\)

Ta có: \(\frac{a}{a+b+c}< \frac{a}{a+c}\)

\(\frac{b}{b+c+d}< \frac{b}{b+d}\)

\(\frac{c}{c+d+a}< \frac{c}{a+c}\)

\(\frac{d}{d+a+b}< \frac{d}{d+b}\)

\(\Rightarrow S< \left(\frac{a}{a+c}+\frac{c}{a+c}\right)+\left(\frac{b}{b+d}+\frac{d}{d+b}\right)\)

\(\Rightarrow S< 2\left(1\right)\)

Lại có: \(\frac{a}{a+b+c}>\frac{a}{a+b+c+d}\)

\(\frac{b}{b+c+d}>\frac{b}{b+c+a+d}\)

\(\frac{c}{c+d+a}>\frac{c}{a+b+c+d}\)

\(\frac{d}{d+a+b}>\frac{d}{a+b+c+d}\)

\(\Rightarrow S>1\left(2\right)\)

Từ (1) và (2) \(\Rightarrowđpcm\)

15 tháng 2 2020

nhanh the

2 tháng 1 2016

\(b=\frac{a+c}{2}\Rightarrow2b=a+c\Rightarrow2bd=d\left(a+c\right)=ad+dc\)  (1)

\(c=\frac{2bd}{b+d}\Rightarrow2bd=c\left(b+d\right)=cb+cd\) (2)

Từ (1) và (2) => \(ad+dc=cb+cd\)                   \(\left(=abd\right)\)

=> \(ad+cd-cd=cb+cd-cd\)

=> \(ad=cb\)

=> \(\frac{a}{b}=\frac{c}{d}\)

vậy 4 số a, b, c, d lập đc 1 tỉ lệ thức

21 tháng 8 2021

Ta có b=\(\dfrac{a+c}{2}\)⇒2b=a+c⇒2bd=d(a+c)=ad+dc(1)

          c=\(\dfrac{2bd}{b+d}\)⇒2bd=c(b+d)=cb+cd(2)

Từ (1) và (2)⇒ad+dc=cb+cd(=2bd)

⇒ad+cd-cd=cb+cd-cd

⇒ad=cb

3 tháng 4 2017

d= d* 1

= d* (af- be)

= daf- dbe

= daf- bcf+ bcf- dbe 

= f (ad- bc)+b (cf- de)

Do \(\frac{a}{b}\) >\(\frac{c}{d}\) >\(\frac{e}{f}\)nên ad- bc >=af- be=1, cf- de>=1

=> f(ad- be)+ b(cf- de) >= f + b

<=> d >= b+f (đpcm)

22 tháng 3 2017

bó tay . com

26 tháng 7 2019

Bạn ơi bạn vô câu hỏi tương tự xem nhé

Học tốt

26 tháng 7 2019

Tham khảo nhé!

>>https://olm.vn/hoi-dap/detail/80507618602.html

2 tháng 10 2016

2bd=c(b+d)

<=>(a+c)d=bc+cd

<=>ad+cd=bc+cd

<=>ad=bc

<=>\(\frac{a}{b}=\frac{c}{d}\)

<=>\(\frac{a}{c}=\frac{b}{d}\) <=> \(\frac{a+b}{c+d}=\frac{a-b}{c-d}\)<=>\(\frac{a+b}{a-b}=\frac{c+d}{c-d}\) (đpcm)