\(\frac{a+c}{2}\)và c= \(\frac{2...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 1 2016

\(b=\frac{a+c}{2}\Rightarrow2b=a+c\Rightarrow2bd=d\left(a+c\right)=ad+dc\)  (1)

\(c=\frac{2bd}{b+d}\Rightarrow2bd=c\left(b+d\right)=cb+cd\) (2)

Từ (1) và (2) => \(ad+dc=cb+cd\)                   \(\left(=abd\right)\)

=> \(ad+cd-cd=cb+cd-cd\)

=> \(ad=cb\)

=> \(\frac{a}{b}=\frac{c}{d}\)

vậy 4 số a, b, c, d lập đc 1 tỉ lệ thức

21 tháng 8 2021

Ta có b=\(\dfrac{a+c}{2}\)⇒2b=a+c⇒2bd=d(a+c)=ad+dc(1)

          c=\(\dfrac{2bd}{b+d}\)⇒2bd=c(b+d)=cb+cd(2)

Từ (1) và (2)⇒ad+dc=cb+cd(=2bd)

⇒ad+cd-cd=cb+cd-cd

⇒ad=cb

17 tháng 10 2020

B1:

Từ \(b=\frac{a+c}{2}\Rightarrow2b=a+c\left(1\right)\)

Từ \(c=\frac{2bd}{b+a}\)thay vào (1) ta được:

\(2b=a+\frac{2bd}{b+a}\)

\(\Leftrightarrow2b\left(b+a\right)=a\left(b+a\right)+2bd\)

\(\Leftrightarrow2b^2+2ab=ab+a^2+2bd\)

\(\Leftrightarrow2b^2+ab-a^2-2bd=0\)

\(\Leftrightarrow2b\left(b-d\right)+a\left(b-a\right)=0\)

\(\Leftrightarrow2b\left(b-d\right)=a\left(a-b\right)\Leftrightarrow\frac{2b}{a}=\frac{a-b}{b-d}\)

17 tháng 10 2020

B2: Từ \(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\Rightarrow\frac{1}{c}=\frac{a+b}{2ab}hay2ab=c\left(a+b\right)\)

\(\Rightarrow ab+ab=ac+bc\Rightarrow ab-bc=ac-ab\Rightarrow b\left(a-c\right)=a\left(c-b\right)\)

Do đó: \(\frac{a-c}{c-b}=\frac{a}{b}\)(đpcm)

1 tháng 9 2016

2b = a+ c(1)

2bd = bc + bd

<=> ( a+c )d= bc+ cd

<=>  ad +cd= bc+ cd

<=> ad = bc

<=>  a/b = c/d (đpcm)

27 tháng 10 2016

Ta có:

\(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{b}+\frac{1}{d}\right)=\frac{b+d}{2bd}\)

\(\Rightarrow2bd=c\left(b+d\right)\left(2\right)\)

Do b là TBC của a và c nên \(b=\frac{a+c}{2}\)

Thay vào (1) ta có: \(2.\frac{a+c}{2}.d=c.\left(\frac{a+c}{2}+d\right)\)

=> (a + c).d = \(\frac{c.\left(a+c+2d\right)}{2}\)

=> (a + c).2d = c.(a + c + 2d)

=> 2ad + 2cd = ac + c2 + 2cd

=> 2ad = ac + c2 = c.(a + c) = c.2b

=> ad = bc

\(\Rightarrow\frac{a}{b}=\frac{c}{d}\left(đpcm\right)\)

13 tháng 5 2017

Từ c(b+d)=2bd=>bc+cd=2bd

Ta lại có             a+c =2b

Lấy vế chia vế được :\(\frac{bc+cd}{a+c}=\frac{2bd}{2b}=\)\(d\)

=>bc+cd=ad+cd=>bc=ad=>\(\frac{a}{b}=\frac{c}{d}\)

+ , \(\frac{a}{b}=\frac{c}{d}\)\(\frac{a+c}{b+d}\)=> \(\left(\frac{a+c}{b+d}\right)^8=\left(\frac{a}{b}\right)^8\)\(\frac{a^8}{b^8}\) (1)

\(\frac{a}{b}=\frac{c}{d}\)=> \(\left(\frac{a}{b}\right)^8=\left(\frac{c}{d}\right)^8\)<=>\(\frac{a^8}{b^8}=\frac{c^8}{d^8}\)=\(\frac{a^8+c^8}{b^8+d^8}\) (2)

Từ (1) và (2) ta suy ra : \(\left(\frac{a+c}{b+d}\right)^8=\frac{a^8+c^8}{b^8+d^8}\) ( đpcm)

24 tháng 10 2018

\(1,\)

\(a,\dfrac{a}{b}=\dfrac{c}{d}\)

\(\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}\)

\(\dfrac{a}{c}=\dfrac{a+b}{c+d}\Rightarrow\dfrac{a+b}{a}=\dfrac{c+d}{c}\left(đpcm\right)\)

\(b,\dfrac{a}{b}=\dfrac{c}{d}\)

\(\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a-b}{c-d}\)

\(\dfrac{a}{c}=\dfrac{a-b}{c-d}\Rightarrow\dfrac{a-b}{a}=\dfrac{c-d}{c}\)

\(2,\dfrac{a}{b+c}=\dfrac{b}{a+c}=\dfrac{c}{a+b}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\dfrac{a}{b+c}=\dfrac{b}{c+a}=\dfrac{c}{a+b}=\dfrac{a+b+c}{b+c+c+a+a+b}=\dfrac{a+b+c}{2a+2b+2c}=\dfrac{a+b+c}{2.\left(a+b+c\right)}=\dfrac{1}{2}\)

\(3,\)

\(\dfrac{2a+13b}{3a-7b}=\dfrac{2c+13d}{3c-7d}\)

\(\Rightarrow\text{​​}\dfrac{2a+13b}{2c+13d}=\dfrac{3a-7b}{3c-7d}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\text{​​}\dfrac{2a+13b}{2c+13d}=\dfrac{3a-7b}{3c-7d}=\dfrac{2a+13b+3a-7b}{2c+13d+3c-7d}=\dfrac{5a+6b}{5c+6d}\)

\(\Rightarrow\dfrac{5a}{5c}=\dfrac{6b}{6d}\)

\(\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)

\(\Rightarrow\dfrac{a}{b}=\dfrac{c}{d}\)

\(4,\) https://hoc24.vn/hoi-dap/question/157445.html