Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta chỉ cần cộng thêm 1 vào mỗi tỉ số,
\(\frac{b+c+d}{a}+1=\frac{c+d+a}{b}+1=\frac{d+a+b}{c}+1=\frac{a+b+c}{d}+1\)
\(\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)
Vì a + b + c + d \(\ne\)0 nên a = b = c = d
\(\Rightarrow k=\frac{3a}{a}=3\)
Áp dụng t/c dttsbn:
\(\dfrac{a+b+c-2020d}{d}=\dfrac{b+c+d-2020a}{a}=\dfrac{c+d+a-2020b}{b}=\dfrac{d+a+b-2020c}{c}=\dfrac{3\left(a+b+c+d\right)-2020\left(a+b+c+d\right)}{a+b+c+d}=-2017\)
\(\Rightarrow\left\{{}\begin{matrix}a+b+c-2020d=-2017d\\b+c+d-2020a=-2017a\\c+d+a-2020b=-2017b\\d+a+b-2020c=-2017c\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}a+b+c=3d\\b+c+d=3a\\c+d+a=3b\\d+a+b=3c\end{matrix}\right.\Rightarrow a=b=c=d\)
\(F=\dfrac{a+b}{c+d}+\dfrac{b+c}{d+a}+\dfrac{c+d}{a+b}+\dfrac{a+d}{b+c}\\ F=\dfrac{a+a}{a+a}+\dfrac{a+a}{a+a}+\dfrac{a+a}{a+a}+\dfrac{a+a}{a+a}=4\)
Ta có với a,b,c,d là các số thực khác 0
\(\Rightarrow\frac{a-b+c+d}{b}=\frac{a+b-c+d}{c}=\frac{a+b+c-d}{d}=\frac{b+c+d-a}{a}\)
\(\Rightarrow\frac{a-b+c+d}{b}+1=\frac{a+b-c+d}{c}+1=\frac{a+b+c-d}{d}+1=\frac{b+c+d-a}{a}+1\)
\(\Rightarrow\frac{a+c+d}{b}=\frac{a+b+d}{c}=\frac{a+b+c}{d}=\frac{b+c+d}{a}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\Rightarrow\frac{a+c+d}{b}=\frac{a+b+d}{c}=\frac{a+b+c}{d}=\frac{b+c+d}{a}=\frac{3\left(a+b+c+d\right)}{a+b+c+d}=3\)
Ta có M= \(\left(\frac{a+c+d}{b}\right)\left(\frac{a+b+d}{c}\right)\left(\frac{a+b+c}{d}\right)\left(\frac{b+c+d}{a}\right)\)
=> M= 3.3.3.3
=> M =81
Áp dụng TC cuae DTSBN ta có:
a-b+c+d/b = a+b-c+d/c = a+b+c-d/d = b+c+d-a/a = \(\frac{a-b+c+d+a+b-c+d+a+b+c-d+b+c+d-a}{b+c+d+a}=\frac{3\left(a+b+c+d\right)}{a+b+c+d}=3\)
=> a-b+c+d/b = 3 => a-b+c+d = 3b => a+c+d = 4b
a+b-c+d/c = 3 => a+b-c+d = 3c => a+b+d = 4c
a+b+c-d/d = 3 => a+b+c-d = 3d => a+b+c = 4d
b+c+d-a/a = 3 => b+c+d-a = 3a => b+c+d = 4a
=> M = \(\frac{\left(a+b+c\right)\left(a+b+d\right)\left(b+c+d\right)\left(c+d+a\right)}{abcd}=\frac{4d.4c.4a.4b}{abcd}=\frac{256abcd}{abcd}=256\)
Vậy M = 256
Bạn tham khảo câu hỏi tương tự.
Câu hỏi của Đào Thị Lan Nhi - Toán lớp 7 - Học trực tuyến OLM
cộng thêm 1 vào mỗi tỉ số , ta được :
\(\frac{b+c+d}{a}+1=\frac{c+d+a}{b}+1=\frac{d+a+b}{c}+1=\frac{a+b+c}{d}+1\)
\(\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)
vì a + b + c + d \(\ne\)0 nên a = b = c = d
Suy ra : k = \(\frac{3a}{a}=3\)
Ta có \(a+b=c+d=25\Rightarrow\frac{c}{b}=\frac{d}{a}\)(vì \(\frac{c}{b}+\frac{d}{b}=\frac{c+d}{b+a}=1\)
Vậy \(M=\frac{c}{b}+\frac{d}{a}\le2\)
Dấu "=" xảy ra khi \(a=b=c=d=\frac{25}{2}\)
Vì \(\frac{c}{b}+\frac{d}{b}=\frac{c+d}{b+a}=1\)
Nên \(a+b=c+d=25=>\frac{c}{b}=\frac{d}{b}\)
Vậy \(M=\frac{c}{b}+\frac{d}{a}\le2\)
Dấu "=" xảy ra khi \(a=b=c=d=\frac{25}{2}\)
Lời giải:
Nếu $a+b+c+d=0$ thì $a+b+c=-d$
Khi đó: $P=\frac{-d}{d}=-1$
Nếu $a+b+c+d\neq 0$ thì áp dụng tính chất dãy tỉ số bằng nhau thì:
$\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=\frac{a+b+c+d}{b+c+d+a}=1$
$\Rightarrow a=b=c=d$
$\Rightarrow P=\frac{d+d+d}{d}=\frac{3d}{d}=3$
ta có :
\(\frac{b+c+d}{a}=\frac{a+c+d}{b}=\frac{a+b+d}{c}=\frac{a+b+c}{d}\)
áp dụng tính chất của dãy tí số bằng nhau ta có
\(\frac{b+c+d}{a}=\frac{a+c+d}{b}=\frac{a+b+d}{c}=\frac{a+b+c}{d}=\frac{3\left(a+b+c+d\right)}{\left(a+b+c+d\right)}=3\)
\(\Rightarrow\hept{\begin{cases}b+c+d=3a\\a+c+d=3b\end{cases}}\text{ và }\hept{\begin{cases}a+b+d=3c\\a+b+c=3d\end{cases}}\)
\(\Rightarrow a=b=c=d\Rightarrow k=\frac{a+b}{c+d}=1\)