K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 12 2019

Đề sai nhé bạn :

Chẳng hạn : \(0+1+2=3\)

Nhưng \(0^2+1^2+2^2=5>3\)nhé 

NV
24 tháng 6 2021

\(3=a+b+c\ge3\sqrt[3]{abc}\Rightarrow abc\le1\)

BĐT tương đương:

\(3\left(ab+bc+ca\right)\ge abc\left[\left(a+b+c\right)^2-2\left(ab+bc+ca\right)+6\right]\)

\(\Leftrightarrow3\left(ab+bc+ca\right)\ge abc\left[15-2\left(ab+bc+ca\right)\right]\)

\(\Leftrightarrow\left(ab+bc+ca\right)\left(2abc+3\right)\ge15abc\)

\(\Leftrightarrow\left(ab+bc+ca\right)^2\left(2abc+3\right)^2\ge225\left(abc\right)^2\)

Do \(\left(ab+bc+ca\right)^2\ge3abc\left(a+b+c\right)=9abc\)

Nên ta chỉ cần chứng minh:

\(\left(2abc+3\right)^2\ge25abc\)

\(\Leftrightarrow\left(1-abc\right)\left(9-4abc\right)\ge0\) (luôn đúng với \(0< abc\le1\))

Dấu "=" xảy ra khi \(a=b=c=1\)

2 tháng 1 2021

Từ giả thiết \(-2\le a,b,c\le3\) suy ra:

\(\left\{{}\begin{matrix}\left(a+2\right)\left(a-3\right)\le0\\\left(b+2\right)\left(b-3\right)\le0\\\left(c+2\right)\left(c-3\right)\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a^2-a-6\le0\\b^2-b-6\le0\\c^2-c-6\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a\ge a^2-6\\b\ge b^2-6\\c\ge c^2-6\end{matrix}\right.\)

\(\Rightarrow M=a+b+c\ge\left(a^2+b^2+c^2\right)-18=4\)

\(min=4\Leftrightarrow\left(a;b;c\right)=\left(2;3;3\right)\) và các hoán vị

2 tháng 1 2021

Nhầm

\(\left(a;b;c\right)=\left(-2;3;3\right)\) và các hoán vị

 

10 tháng 12 2021

đề chiều nay e thi đấy

10 tháng 12 2021

thoi nghỉ ik e :))

17 tháng 1 2022

Áp dụng bất đẳng thức Chevbyshev cho hai bộ đơn điệu cùng chiều \(\left(\dfrac{2}{a+b},\dfrac{2}{b+c},\dfrac{2}{c+a}\right)\) và \(\left(c\left(a+b\right),a\left(b+c\right),b\left(c+a\right)\right)\) ta có \(2c+2a+2b=\dfrac{2}{a+b}.c\left(a+b\right)+\dfrac{2}{b+c}.a\left(b+c\right)+\dfrac{2}{c+a}.b\left(c+a\right)\ge\dfrac{1}{3}\left(\dfrac{2}{a+b}+\dfrac{2}{b+c}+\dfrac{2}{c+a}\right)\left(a\left(b+c\right)+b\left(c+a\right)+c\left(a+b\right)\right)=\dfrac{2}{3}\left(ab+bc+ca\right)\left(\dfrac{2}{a+b}+\dfrac{2}{b+c}+\dfrac{2}{c+a}\right)\).

Mà \(\dfrac{2}{a+b}+\dfrac{2}{b+c}+\dfrac{2}{c+a}=a+b+c\) nên \(ab+bc+ca\le3\).

6 tháng 5 2021

Ta có \(\sqrt{1+a^2}+\sqrt{2a}\le\sqrt{2\left(1+a^2+2a\right)}=\sqrt{2}\left(a+1\right)\).

Tương tự \(\sqrt{1+b^2}+\sqrt{2b}\le\sqrt{2}\left(b+1\right)\)\(\sqrt{1+c^2}+\sqrt{2c}\le\sqrt{2}\left(c+1\right)\).

Lại có \(\left(2-\sqrt{2}\right)\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\le\left(2-\sqrt{2}\right)\sqrt{3\left(a+b+c\right)}\le3\left(2-\sqrt{2}\right)\).

Do đó \(B\le\sqrt{2}\left(a+b+c+3\right)+3\left(2-\sqrt{2}\right)\le6\sqrt{2}+6-3\sqrt{2}=3\sqrt{2}+6\).

Dấu "=" xảy ra khi a = b = c = 1.