Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{1}{a}+\frac{1}{b}-\frac{1}{c}=\frac{1}{a+b-c}\Leftrightarrow\frac{bc+ac-ab}{abc}=\frac{1}{a+b-c}\)\(\Leftrightarrow\left(bc+ca-ab\right)\left(a+b-c\right)=abc\)\(\Leftrightarrow\left(abc+b^2c-bc^2\right)-\left(a^2b+ab^2-abc\right)-ca\left(c-a\right)=0\)\(\Leftrightarrow b\left(c-a\right)\left(a+b-c\right)-ca\left(c-a\right)=0\)\(\Leftrightarrow\left(c-a\right)\left(ab+b^2-bc-ca\right)=0\Leftrightarrow\left(c-a\right)\left(b-c\right)\left(a+b\right)=0\)
Vì a, b, c đôi một khác nhau nên a + b = 0 hay b = - a < 0 (Do a > 0)
Vậy b < 0 (đpcm)
\(a+\frac{1}{b}=b+\frac{1}{c}=c+\frac{1}{a}\)
=> \(a-b=\frac{1}{c}-\frac{1}{b}\) => a - b = \(\frac{b-c}{bc}\) (1)
b - c = \(\frac{1}{a}-\frac{1}{c}\) => b - c = \(\frac{c-a}{ac}\) (2)
c - a = \(\frac{1}{b}-\frac{1}{a}=\frac{a-b}{ab}\) (3)
Nhân vế với vế của (1)(2)(3) => \(\left(a-b\right)\left(b-c\right)\left(c-a\right)=\frac{b-c}{bc}.\frac{c-a}{ac}.\frac{a-b}{ab}\)
=> (abc)2 = 1 => abc = 1 hoặc abc = -1
Vậy...
Từ \(a^2-b=b^2-c\)
\(\Leftrightarrow\left(a-b\right)\left(a+b\right)=b-c\)
\(\Leftrightarrow a+b=\frac{b-c}{a-b}\)
\(\Rightarrow a+b+1=\frac{b-c}{a-b}+1=\frac{a-c}{a-b}\)
Tương tự ta có:
\(\hept{\begin{cases}b+c+1=\frac{b-a}{b-c}\\c+a+1=\frac{c-b}{c-a}\end{cases}}\)
\(\Rightarrow\left(a+b+1\right)\left(b+c+1\right)\left(c+a+1\right)=\frac{a-c}{a-b}.\frac{b-a}{b-c}.\frac{c-b}{c-a}=-1\)
từ đề bài \(\Rightarrow\frac{a}{b-c}=-\frac{b}{c-a}-\frac{c}{a-b}=\frac{-b\left(a-b\right)-c\left(c-a\right)}{\left(a-b\right)\left(c-a\right)}=\frac{-ab+b^2-c^2+ac}{\left(a-b\right)\left(c-a\right)}\)
\(\Rightarrow\frac{a}{\left(b-c\right)^2}=\frac{-ab+b^2-c^2+ac}{\left(a-b\right)\left(c-a\right)\left(b-c\right)}\)
Tương tự : \(\hept{\begin{cases}\frac{b}{\left(c-a\right)^2}=\frac{-cb+c^2-a^2+ab}{\left(a-b\right)\left(c-a\right)\left(b-c\right)}\\\frac{c}{\left(a-b\right)^2}=\frac{-ac+a^2-b^2+bc}{\left(a-b\right)\left(c-a\right)\left(b-c\right)}\end{cases}}\)
Cộng vế với vế ta được : \(\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(c-a\right)^2}+\frac{c^2}{\left(a-b\right)^2}\)
\(=\frac{-ab+b^2-c^2+ac-bc+c^2-a^2+ab-ac+a^2-b^2+bc}{\left(a-b\right)\left(c-a\right)\left(b-c\right)}=0\)(đpcm)