Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=a^2+ab+b^2-3a-3b+2001\)
\(\Rightarrow2M=2a^2+2ab+2b^2-6a-6b+4002\)
\(=\left(a^2+2ab+b^2\right)-4\left(a+b\right)+4+\left(a^2-2a+1\right)+\left(b^2-2b+1\right)+3996\)
\(=\left(a+b-2\right)^2+\left(a-1\right)^2+\left(b-1\right)^2+3996\ge3996\)
\(\Rightarrow M\ge1998\)
bài 5 nhé:
a) (a+1)2>=4a
<=>a2+2a+1>=4a
<=>a2-2a+1.>=0
<=>(a-1)2>=0 (luôn đúng)
vậy......
b) áp dụng bất dẳng thức cô si cho 2 số dương 1 và a ta có:
a+1>=\(2\sqrt{a}\)
tương tự ta có:
b+1>=\(2\sqrt{b}\)
c+1>=\(2\sqrt{c}\)
nhân vế với vế ta có:
(a+1)(b+1)(c+1)>=\(2\sqrt{a}.2\sqrt{b}.2\sqrt{c}\)
<=>(a+1)(b+1)(c+1)>=\(8\sqrt{abc}\)
<=>(a+)(b+1)(c+1)>=8 (vì abc=1)
vậy....
\(S=\dfrac{1}{a^3+b^3}+\dfrac{\dfrac{9}{4}}{3a^2b}+\dfrac{\dfrac{9}{4}}{3ab^2}+\dfrac{1}{4ab}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\)
Áp dụng bđt Cauchy-Schwarz dạng Engel có:
\(S\ge\dfrac{\left(1+\dfrac{3}{2}+\dfrac{3}{2}\right)^2}{a^3+3a^2b+3ab^2+b^3}+\dfrac{1}{4ab}.\dfrac{4}{a+b}\)
\(\Leftrightarrow S\ge\dfrac{16}{\left(a+b\right)^3}+\dfrac{1}{\left(a+b\right)^2}.\dfrac{4}{a+b}\)
\(\Leftrightarrow S\ge\dfrac{16}{1}+\dfrac{1}{1}.\dfrac{4}{1}=20\)
Dấu "=" xảy ra khi \(a=b=\dfrac{1}{2}\)
Vậy GTNN của \(S=20\) khi \(a=b=\dfrac{1}{2}\)
2:
a: =>a^2+2ab+b^2-2a^2-2b^2<=0
=>-(a^2-2ab+b^2)<=0
=>(a-b)^2>=0(luôn đúng)
b; =>a^2+b^2+c^2+2ab+2ac+2bc-3a^2-3b^2-3c^2<=0
=>-(2a^2+2b^2+2c^2-2ab-2ac-2bc)<=0
=>(a-b)^2+(b-c)^2+(a-c)^2>=0(luôn đúng)
\(A=\dfrac{1}{a^2+b^2}+\dfrac{1}{ab}+4ab=\dfrac{1}{a^2+b^2}+\dfrac{1}{2ab}+\dfrac{1}{2ab}+8ab-4ab\ge\dfrac{4}{a^2+b^2+2ab}+2\sqrt{\dfrac{1}{2}.8}-\dfrac{4.\left(a+b\right)^2}{4}=\dfrac{4}{\left(a+b\right)^2}+4-\left(a+b\right)^2\ge4+4-1=7\Rightarrow minA=7\Leftrightarrow a=b=\dfrac{1}{2}\)
\(P=\dfrac{a^2+b^2}{a-b}=\dfrac{\left(a-b\right)^2+2ab}{a-b}=\dfrac{\left(a-b\right)^2+2}{a-b}=\left(a-b\right)+\dfrac{2}{a-b}\)
Áp dụng bất đẳng thức Cauchy ta có:
\(\left(a-b\right)+\dfrac{2}{a-b}\ge2\sqrt{\left(a-b\right).\dfrac{2}{a-b}}=2\sqrt{2}\) hay \(P\ge2\sqrt{2}\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}a>b\\a-b=\dfrac{2}{a-b}\\ab=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a-b=\sqrt{2}\\ab=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=b+\sqrt{2}\\\left(b+\sqrt{2}\right)b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{\pm6+\sqrt{2}}{2}\\b=\dfrac{\pm\sqrt{6}-\sqrt{2}}{2}\end{matrix}\right.\)Vậy \(MinP=2\sqrt{2}\), đạt tại \(\left(a;b\right)=\left(\dfrac{\sqrt{6}+\sqrt{2}}{2};\dfrac{\sqrt{6}-\sqrt{2}}{2}\right),\left(\dfrac{-\sqrt{6}+\sqrt{2}}{2};\dfrac{-\sqrt{6}-\sqrt{2}}{2}\right)\)
Cảm ơn ạ