Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với a\(\in\)Z thì a3-a=(a-1)a(a+1) là tích 3 số tự nhiên liên tiếp nên chia hết cho 2,3
Mà (2,3)=1 => a3-a chia hết cho 6
=> S-P=(a13-a1)+(a23-a2)+....+(an3-an) chia hết cho 6
Vậy S chia hết cho 6 <=> P chia hết cho 6
Ta thấy: \(2017^{2016}\equiv1\)(mod 6)
Từ đó: (1 <= i <= k) \(\text{Σ}n_i\equiv1\)(mod 6)
Dễ chứng minh: \(\left(6k+m\right)^3\equiv m\equiv6k+m\)(mod 6) với 0<=m<=6
Từ đó ta có: \(x^3\equiv x\)(mod 6) với x là số tự nhiên
Vậy \(\text{Σ}n_i^3\equiv\text{Σ}n_i\equiv1\)(mod 6)
Vậy \(\text{Σ}n_i^3\)chia 6 dư 1
ta có: \(N=2017^{2016}\)
xét \(a^3-a=a\left(a^2-1\right)=\left(a-1\right)a\left(a+1\right)\)là tích 3 số nguyên liên tiếp nên a3-a chia hết cho 6 với mọi a
đặt N=\(n_1+n_2+...+n_k=2017^{2016}\)
\(\Rightarrow S-N=\left(n_1^5+n_2^3+....+n_k^3\right)-\left(n_1+....+n_k\right)=\left(n_1^3-n_1\right)+\left(n_2^3-n_2\right)+....+\left(n_k^3-n_k\right)\)
\(\Rightarrow S-N⋮6\)
=> S và N cùng số dư khi chia cho 6
thấy 2017 chia 6 dư 1
20172016 chia 6 dư 1 => N chia 6 dư 1
=> S chia 6 dư 1
Trên nửa mặt phẳng bờ là đường thẳng đi qua hai điểm B, C. Vẽ tia Bx sao cho góc CBx = 70 độ, vẽ tia Cy sao cho góc BCy = 110 độ
a) Chỉ ra các cặp góc bù nhau
b) Qua hình vẽ, dự đoán gì về 2 tia Bx, Cy ?
LÀM HỘ EM ĐƯỢC KHÔNG Ạ ? EM CẢM ƠN NHIỀU Ạ
Trần Thiên Kim: nghe nói bạn học tốt casio, vào đây bơi chút đi. Mấy cái U1, U2, Un này t nhớ là hồi ôn thi t bị ông thầy mất kiên nhẫn giảng như hét vào mặt => ám ảnh ứ dám hỏi nữa. Nấm và tớ vẫn chờ câu trả lời của bạn á ^^!
gì vậy chời?!?! Bộ mấy người thông đồng vs nhau gọi t lm mí bài casio ak -_- đùa thôi chứ t chỉ lm đc câu a, b mới nghe lần đầu => chịu :(