Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=> 6ab = 36 - (a - b)2 ≤≤ 36 + 0 => ab ≤≤ 36/6 = 6
=> GTLN của x = ab là 6
Dấu '=' xảy ra khi a = b = √66 hoặc a = b = - √6
ko đúng thì xl
Trả lời
=> 6ab = 36 - ( a - b ) ^2 < 36 + 0 => ab < 36/6
=> GTLN của x = ab là 6
Dấu " = " xảy ra khi a=b = √6hoặc a = b = -√6
HT
BÀI 1 : cho x+y=2 ................
GIẢI :
TA CÓ :x2+y2\(\ge\)\(\frac{\left(x+2\right)^2}{2}\)=2
MIN =2 khi x=y=1
BÀI 2: cho a,b>0 và ...........
GIẢI:
12=3a+5b \(\ge\)2\(\sqrt{3a.5b}\)
\(=2\sqrt{15ab}=>ab\le\frac{36}{15}=\frac{12}{15}\)
dấu "=" xảy ra khi 3a=5b,3a+5b=12
<=>a=2,b=6/5
tk mk nha !\(\phi\Phi\alpha\omega\Phi\varepsilon\partial\beta\)
a) \(a+b=2\)
=> \(b=2-a\)
\(A=a^2+\left(2-a\right)^2=2a^2-4a+4=\left(\sqrt{2}a-\sqrt{2}\right)^2+2\ge2\)
Vậy \(A_{min}=2\)
b) \(x+2y=8\)
=> \(x=8-2y\)
\(B=y\left(8-2y\right)=8y-2y^2=8-\left(\sqrt{2}y-2\sqrt{2}\right)^2\le8\)
Vậy \(B_{max}=8\)
a) \(\left(a-b\right)^2\ge0\Leftrightarrow a^2+b^2\ge2ab\Leftrightarrow2\left(a^2+b^2\right)\ge a^2+b^2+2ab\)
\(\Leftrightarrow a^2+b^2\ge\frac{\left(a+b\right)^2}{2}=\frac{2^2}{2}=2\)
Dấu \(=\)khi \(a=b=1\).
b) \(\left(x-2y\right)^2\ge0\Leftrightarrow x^2+4y^2\ge4xy\Leftrightarrow x^2+4xy+4y^2\ge8xy\)
\(\Leftrightarrow xy\le\frac{\left(x+2y\right)^2}{8}=\frac{8^2}{8}=8\)
Dấu \(=\)khi \(\hept{\begin{cases}x=4\\y=2\end{cases}}\).
a: Khi x=6 thì \(A=\dfrac{4}{6-3}=\dfrac{4}{3}\)
b: \(B=\dfrac{4x}{x^2-9}-\dfrac{x-3}{x+3}\)(ĐKXĐ: \(x\notin\left\{3;-3\right\}\))
\(=\dfrac{4x}{\left(x-3\right)\left(x+3\right)}-\dfrac{x-3}{x+3}\)
\(=\dfrac{4x-\left(x-3\right)^2}{\left(x+3\right)\left(x-3\right)}\)
\(=\dfrac{4x-x^2+6x-9}{\left(x+3\right)\left(x-3\right)}=\dfrac{-x^2+10x-9}{\left(x+3\right)\left(x-3\right)}\)
\(36=\left(a-b\right)^2+6ab\ge6ab\Rightarrow ab\le6\)
\(X_{max}=6\) khi \(a=b=\pm\sqrt{6}\)
\(\left(a-b\right)^2+6ab=36\Rightarrow6ab=36-\left(a-b\right)^2\le36\)
\(\Rightarrow ab\le\dfrac{36}{6}=6\)
\(ĐTXR\Leftrightarrow a=b=\pm\sqrt{6}\)