K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
25 tháng 8 2021

\(36=\left(a-b\right)^2+6ab\ge6ab\Rightarrow ab\le6\)

\(X_{max}=6\) khi \(a=b=\pm\sqrt{6}\)

25 tháng 8 2021

\(\left(a-b\right)^2+6ab=36\Rightarrow6ab=36-\left(a-b\right)^2\le36\)

\(\Rightarrow ab\le\dfrac{36}{6}=6\)

\(ĐTXR\Leftrightarrow a=b=\pm\sqrt{6}\)

25 tháng 8 2021

=> 6ab = 36 - (a - b)2 ≤≤ 36 + 0 => ab ≤≤ 36/6 = 6

=> GTLN của x = ab là 6

Dấu '=' xảy ra khi a = b = √66 hoặc a = b = - √6

ko đúng thì xl 

Trả lời

=> 6ab = 36 - ( a - b ) ^2 < 36 + 0 => ab < 36/6

=> GTLN của x = ab là 6

Dấu " = " xảy ra khi a=b = √6hoặc a = b = -√6

HT

17 tháng 6 2017

​​BÀI 1 : cho x+y=2 ................

GIẢI :

TA CÓ :x2+y2\(\ge\)\(\frac{\left(x+2\right)^2}{2}\)=2

MIN =2 khi x=y=1

BÀI 2: cho a,b>0 và ...........

GIẢI:

12=3a+5b   \(\ge\)2\(\sqrt{3a.5b}\)

\(=2\sqrt{15ab}=>ab\le\frac{36}{15}=\frac{12}{15}\)

dấu "=" xảy ra khi 3a=5b,3a+5b=12

<=>a=2,b=6/5

tk mk nha !\(\phi\Phi\alpha\omega\Phi\varepsilon\partial\beta\)

7 tháng 10 2018

a) \(a+b=2\)

=>  \(b=2-a\)

\(A=a^2+\left(2-a\right)^2=2a^2-4a+4=\left(\sqrt{2}a-\sqrt{2}\right)^2+2\ge2\)

Vậy \(A_{min}=2\)

b)  \(x+2y=8\)

=> \(x=8-2y\)

\(B=y\left(8-2y\right)=8y-2y^2=8-\left(\sqrt{2}y-2\sqrt{2}\right)^2\le8\)

Vậy  \(B_{max}=8\)

DD
20 tháng 7 2021

a) \(\left(a-b\right)^2\ge0\Leftrightarrow a^2+b^2\ge2ab\Leftrightarrow2\left(a^2+b^2\right)\ge a^2+b^2+2ab\)

\(\Leftrightarrow a^2+b^2\ge\frac{\left(a+b\right)^2}{2}=\frac{2^2}{2}=2\)

Dấu \(=\)khi \(a=b=1\).

b) \(\left(x-2y\right)^2\ge0\Leftrightarrow x^2+4y^2\ge4xy\Leftrightarrow x^2+4xy+4y^2\ge8xy\)

\(\Leftrightarrow xy\le\frac{\left(x+2y\right)^2}{8}=\frac{8^2}{8}=8\)

Dấu \(=\)khi \(\hept{\begin{cases}x=4\\y=2\end{cases}}\).

29 tháng 10 2023

a: Khi x=6 thì \(A=\dfrac{4}{6-3}=\dfrac{4}{3}\)

b: \(B=\dfrac{4x}{x^2-9}-\dfrac{x-3}{x+3}\)(ĐKXĐ: \(x\notin\left\{3;-3\right\}\))

\(=\dfrac{4x}{\left(x-3\right)\left(x+3\right)}-\dfrac{x-3}{x+3}\)

\(=\dfrac{4x-\left(x-3\right)^2}{\left(x+3\right)\left(x-3\right)}\)

\(=\dfrac{4x-x^2+6x-9}{\left(x+3\right)\left(x-3\right)}=\dfrac{-x^2+10x-9}{\left(x+3\right)\left(x-3\right)}\)