K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 4 2018

* Với a > b > 0 ta có:

+) a. a > a. b Û a2 > ab

+) Ta có: a2 > ab => a2. a > a. ab Û a3 > a2b

Mà a > b > 0 => ab > b. b Û ab > b2

=> ab. a > b2. b => a2b > b3.

=> a2b > b3 => a3 > a2b > b3.

=> a3 > b3

Vậy a3 > b3.

Đáp án cần chọn là: A

A) Với \(x>y>0\),ta có: \(x^2+y^2< x^2+y^2+2xy=\left(x+y\right)^2\Rightarrow\frac{1}{x^2+y^2}>\frac{1}{\left(x+y\right)^2}\)

Xét: \(\frac{x^2-y^2}{x^2+y^2}>\frac{x^2-y^2}{\left(x+y\right)^2}=\frac{\left(x-y\right)\left(x+y\right)}{\left(x+y\right)^2}=\frac{x-y}{x+y}\)--->ĐPCM

B) \(3^{16}+1=\left(3^{16}-1\right)+2=\left(3^8+1\right)\left(3^8-1\right)+2\)

\(=\left(3^8+1\right)\left(3^4+1\right)\left(3^4-1\right)+2\)

\(=\left(3^8+1\right)\left(3^4+1\right)\left(3^2+1\right)\left(3^2-1\right)+2\)

\(=\left(3^8+1\right)\left(3^4+1\right)\left(3^2+1\right)\left(3+1\right)\left(3-1\right)+2\)

\(>\left(3^8+1\right)\left(3^4+1\right)\left(3^2+1\right)\left(3+1\right)\)--->ĐPCM

1 tháng 7 2019

\(A=\left(a+2b-5+b\right)^2-2ab+34=\left(a+2b-5\right)^2+2b\left(a+2b-5\right)+b^2-2ab+34\)

\(A=\left(a+2b-5\right)^2+5b^2-10b+5+29\)

\(A=\left(a+2b-5\right)^2+5\left(b-1\right)^2+29\ge29\)

\(A_{min}=29\) khi \(\hept{\begin{cases}a=3\\b=1\end{cases}}\)

\(B=x+\frac{25}{x}-8\ge2\sqrt{x.\frac{25}{x}}-8=2\)

\(B_{min}=2\) khi \(x=5\)

\(C=\frac{x^2-15x+36}{x}=x+\frac{36}{x}-15\ge2\sqrt{x.\frac{36}{x}}-15=-3\)

\(C_{min}=-3\) khi \(x=6\)

1 tháng 7 2019

Cảm on bn nhiều nhé

27 tháng 7 2018

2a^2 +2b^2 -5ab = 0

2a^2 -4ab -ab +2b^2 = 0

2a(a-2b) -b(a-2b) = 0

(2a-b)(a-2b) = 0

Suy ra: 2a=b hoặc a=2b

Mà a>b>0 nên a=2b

Ta có: P = a+b/a-b = 2b+b/ 2b-b = 3b/b=3

Vậy P = 3

Chúc bạn học tốt.

27 tháng 7 2018

Ta có: \(2a^2+2b^2=5ab\)

\(\Leftrightarrow2a^2+2b^2-5ab=0\)

\(\Leftrightarrow2a^2-4ab-ab+2b^2=0\)

\(\Leftrightarrow2a\left(a-2b\right)-b\left(a-2b\right)=0\)

\(\Leftrightarrow\left(a-2b\right)\left(2a-b\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a-2b=0\\2a-b=0\end{cases}\Leftrightarrow\orbr{\begin{cases}a=2b\\2a=b\end{cases}}}\)

Mà a > b > 0 nên a = 2b

Thế vào, ta được: \(P=\frac{a+b}{a-b}=\frac{2b+b}{2b-b}=\frac{3b}{b}=3\)

Vậy P = 3

10 tháng 3 2020

ĐKXĐ : \(x\ne\pm1\)

a) Ta có : 

\(P=\frac{x^2+x}{x^2-2x+1}:\left(\frac{x+1}{x}-\frac{1}{1-x}+\frac{2-x^2}{x^2-x}\right)\)

\(=\frac{x\left(x+1\right)}{\left(x-1\right)^2}:\left(\frac{\left(x-1\right)\left(x+1\right)+x+2-x^2}{x\left(x-1\right)}\right)\)

\(=\frac{x\left(x+1\right)}{\left(x-1\right)^2}:\left(\frac{x+1}{x\left(x-1\right)}\right)\)

\(=\frac{x\left(x+1\right)}{\left(x-1\right)^2}\cdot\frac{x\left(x-1\right)}{x+1}=\frac{x^2}{x-1}\)

Vậy : \(P=\frac{x^2}{x-1}\)

b) Ta có : \(x^2+2x-3=0\)

\(\Leftrightarrow x^2+3x-x-3=0\)

\(\Leftrightarrow\left(x+3\right)\left(x-1\right)=0\)

\(\Leftrightarrow x=-3\) ( Do \(x=1\) không thỏa mãn ĐKXĐ )

Thay \(x=-3\) vào P ta có :

\(P=\frac{\left(-3\right)^2}{-3-1}=\frac{9}{-4}=-\frac{9}{4}\)

Vậy : \(P=-\frac{9}{4}\) với x thỏa mãn đề

c)  Phải là : \(x>1\) nhé bạn :

Ta có :

\(P=\frac{x^2}{x-1}=\frac{x^2-1+1}{\left(x-1\right)}=\frac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right)}+\frac{1}{x-1}=x+1+\frac{1}{x-1}\)

\(=\left(x-1+\frac{1}{x-1}\right)+2\)

Ta có : \(x>1\Rightarrow x-1>0,\frac{1}{x-1}>0\)

Áp dụng BĐT AM-GM cho 2 số dương ta có :

\(x-1+\frac{1}{x-1}\ge2\)

Do đó : \(P\ge2+2=4\)

Dấu "="xảy ra \(\Leftrightarrow\left(x-1\right)^2=1\Leftrightarrow x=2\) ( Do \(x>1\) )

Vậy : GTNN của P là 4 tại \(x=2\)

bài này mình cux ko bt làm

17 tháng 2 2020

Mik ghi nhầm BCX=1/2 BAC nha

17 tháng 2 2020

A B C D E

a) Xét \(\Delta\)ABD và  \(\Delta\)CED có:

^BAD = ^ECD ( = 1/2 ^BCx ) 

^ADB = ^CDE ( đối đỉnh) 

=> \(\Delta\)ABD ~ \(\Delta\)CED ( g-g)

b) Xét \(\Delta\)EAC và \(\Delta\)ECD có:

^EAC = ^ECD ( = 1/2 ^BCx ) 

^AEC = ^CED ( ^E chung )

=> \(\Delta\)EAC ~ \(\Delta\)ECD ( g-g)

=> \(\frac{AE}{AC}=\frac{EC}{CD}\)(1)

Mặt khác từ (a) => \(\frac{AB}{AD}=\frac{EC}{CD}\)(2)

Từ (1) ; (2) => \(\frac{AE}{AC}=\frac{AB}{AD}\)=> AB. AC = AE.AD < AE. AE  (3)

=> AB. AC < \(AE^2\)

c) Từ (3) ta có: AB. AC = AE.AD  

Ta lại có: \(4AI^2-DE^2=\left(2AI-DE\right)\left(2AI+DE\right)\)

Vì I là trung điểm DE nên DI = IE = 1/2 DE => DE = 2 DI = 2IE

+) 2AI - DE = 2 ( AD + DI ) - 2 DI  = 2AD + 2 DI - 2 DI = 2 AD

+) 2AI + DE = 2 ( AD + DI ) + DE = 2 AD + 2 DI + DE = 2 AD  + DE + DE = 2 AD + 2 DE = 2 ( AD + DE ) = 2 AE 

=> \(4AI^2-DE^2=2AD.2DE=4AD.DE=4AB.AC\)

Vậy...

d) Xét \(\Delta\)BDE và \(\Delta\)ADC có:

\(\frac{BD}{ED}=\frac{AD}{CD}\)( suy ra từ (a) )

^BDE = ^ADC ( đối đỉnh)

=> \(\Delta\)BDE ~ \(\Delta\)ADC ( g-c)

=> ^EBD = ^CAD = DCE 

=> \(\Delta\)BEC cân 

=> EB = EC 

=> Trung trực BC qua E 

17 tháng 11 2019

\(\frac{a^3}{b+c}+\frac{b^3}{c+a}+\frac{c^3}{a+b}\)

\(=\frac{a^4}{ab+ac}+\frac{b^4}{cb+ba}+\frac{c^4}{ac+bc}\)

\(\ge\frac{\left(a^2+b^2+c\right)^2}{2\left(ab+bc+ca\right)}=\frac{\left(a^2+b^2+c^2\right)\left(a^2+b^2+c^2\right)}{2\left(ab+bc+ca\right)}\)

Mà \(a^2+b^2+c^2\ge ab+bc+ca\Rightarrowđpcm\)

17 tháng 11 2019

\(\frac{a^3}{b+c}+\frac{a^3}{b+c}+\frac{\left(b+c\right)^2}{8}\ge3\sqrt[3]{\frac{a^3}{b+c}.\frac{a^3}{b+c}.\frac{\left(b+c\right)^2}{8}}=\frac{3a^2}{2}\)

Rồi tương tự các kiểu:v

Suy ra \(2VT\ge\frac{3}{2}\left(a^2+b^2+c^2\right)-\frac{\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2}{8}\)

\(\ge\frac{3}{2}\left(a^2+b^2+c^2\right)-\frac{a^2+b^2+c^2}{2}=\left(a^2+b^2+c^2\right)\) (chú ý \(\left(a+b\right)^2\le2\left(a^2+b^2\right)\))

Không phải dùng tới Cauchy-Schwarz:D

Câu 1: Số dư khi chia \(43^2+43.17\) cho 60 là: Câu 2: Số thực x để biểu thức \(A=(5x-3)^2-\dfrac{3}{4}\) đạt giá trị nhỏ nhất là (Nhập kết quả dưới dạng số thập phân gọn nhất) Câu 3: Một hình chữ nhật có chiều dài gấp hai lần chiều rộng. Biết diện tích hình chữ nhật là 8cm2 thì chiều rộng hình chữ nhật là: Câu 4: Hai tam giác ABC và A’B’C’ là hai tam giác đồng dạng với tỉ...
Đọc tiếp

Câu 1: Số dư khi chia \(43^2+43.17\) cho 60 là:

Câu 2: Số thực x để biểu thức \(A=(5x-3)^2-\dfrac{3}{4}\) đạt giá trị nhỏ nhất là

(Nhập kết quả dưới dạng số thập phân gọn nhất)

Câu 3: Một hình chữ nhật có chiều dài gấp hai lần chiều rộng. Biết diện tích hình chữ nhật là 8cm2 thì chiều rộng hình chữ nhật là:

Câu 4: Hai tam giác ABC và A’B’C’ là hai tam giác đồng dạng với tỉ số đồng dạng là \(k=\dfrac{2}{5}\).Nếu chu vi của tam giác A’B’C’ là 40cm thì chu vi của tam giác ABC là:

Câu 5: Cho một hình vuông có diện tích bằng diện tích của hình chữ nhật có chu vi là 104cm và chiều dài bằng 2,25 lần chiều rộng. Độ dài cạnh hình vuông đó là:

Câu 6: Tổng tất cả các số nguyên dương n khác 2 sao cho n-2 là ước của n2+1 là

Câu 7: Biểu thức \(P=\dfrac{1}{x^2+x+1}\)​ đạt giá trị lớn nhất khi x=

(Nhập kết quả dưới dạng số thập phân gọn nhất)

Câu 8: Cho tam giác ABC cân tại A có chu vi là 80cm. Gọi I là giao điểm của các đường phân giác trong của tam giác, AI cắt BC tại D. Biết \(AI=\dfrac{3}{4}AD\). Độ dài cạnh BC là:

Câu 9: Cho \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0; (x,y,z\neq 0)\). Giá trị của biểu thức \(\dfrac{yz}{x^2} +\dfrac{xz}{y^2} +\dfrac{xy}{z^2}\)​ là:

Câu 10: Cho \(x^2+y^2=\dfrac{50}{7}xy\) với y>x>0. Giá trị của biểu thức \(P=\dfrac{x-y}{x+y}\) là:

(Nhập kết quả dưới dạng số thập phân gọn nhất)

1
4 tháng 6 2018

Ai giúp mk với mk đang cần gấp

Mk làm được hết

mà vẫn cứ sai hoài à

tìm mãi ko thấy lỗi sai

29 tháng 1 2020

Câu d : \({2x \over x+1}\) + \({18\over x^2+2x-3}\) = \({2x-5 \over x+3}\)

29 tháng 1 2020

a) \(x^4+2x^3-3x^2-8x-4=0\)

\(\Leftrightarrow x^4+2x^3-3x^2-6x-2x-4=0\)

\(\Leftrightarrow x^3\left(x+2\right)-3x\left(x+2\right)-2\left(x+2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x^3-3x-2=0\right)\)

\(\Leftrightarrow\left(x+2\right)\left(x^3-4x+x-2=0\right)\)

\(\Leftrightarrow\left(x+2\right)\left[x\left(x^2-4\right)+\left(x-2\right)\right]=0\)

\(\Leftrightarrow\left(x+2\right)\left[x\left(x-2\right)\left(x+2\right)+\left(x-2\right)\right]=0\)

\(\Leftrightarrow\left(x+2\right)\left(x-2\right)\left(x^2+2x+1\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x-2\right)\left(x+1\right)^2=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=\pm2\\x=-1\end{cases}}\)

Vậy tập nghiệm của phương trình là \(S=\left\{\pm2;-1\right\}\)

b) \(\left(x-2\right)\left(x+2\right)\left(x^2-10\right)=0\)

\(\Leftrightarrow x-2=0\)hoặc \(x+2=0\)hoặc \(x^2-10=0\)

\(\Leftrightarrow x=2\)hoặc \(x=-2\)hoặc \(x=\pm\sqrt{10}\)

Vậy tập nghiệm của phương trình là : \(S=\left\{\pm2;\pm\sqrt{10}\right\}\)

c) \(2x^3+7x^2+7x+2=0\)

\(\Leftrightarrow2x^3+2x^2+5x^2+5x+2x+2=0\)

\(\Leftrightarrow2x^2\left(x+1\right)+5x\left(x+1\right)+2\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(2x^2+5x+2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\2x^2+5x+2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\left(tm\right)\\2\left(x+\frac{5}{4}\right)^2+\frac{7}{16}=0\left(ktm\right)\end{cases}}\)

Vậy tập nghiệm của phương trình là \(S=\left\{-1\right\}\)

d) Xem lại đề