K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 7 2018

2a^2 +2b^2 -5ab = 0

2a^2 -4ab -ab +2b^2 = 0

2a(a-2b) -b(a-2b) = 0

(2a-b)(a-2b) = 0

Suy ra: 2a=b hoặc a=2b

Mà a>b>0 nên a=2b

Ta có: P = a+b/a-b = 2b+b/ 2b-b = 3b/b=3

Vậy P = 3

Chúc bạn học tốt.

27 tháng 7 2018

Ta có: \(2a^2+2b^2=5ab\)

\(\Leftrightarrow2a^2+2b^2-5ab=0\)

\(\Leftrightarrow2a^2-4ab-ab+2b^2=0\)

\(\Leftrightarrow2a\left(a-2b\right)-b\left(a-2b\right)=0\)

\(\Leftrightarrow\left(a-2b\right)\left(2a-b\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a-2b=0\\2a-b=0\end{cases}\Leftrightarrow\orbr{\begin{cases}a=2b\\2a=b\end{cases}}}\)

Mà a > b > 0 nên a = 2b

Thế vào, ta được: \(P=\frac{a+b}{a-b}=\frac{2b+b}{2b-b}=\frac{3b}{b}=3\)

Vậy P = 3

22 tháng 6 2019

\(4a^2+b^2=5ab\)

\(\Rightarrow4a^2-5ab+b^2=0\)

\(\Rightarrow\left(4a^2-4ab\right)-\left(ab-b^2\right)=0\)

\(\Rightarrow4a\left(a-b\right)-b\left(a-b\right)=0\)

\(\Rightarrow\left(a-b\right)\left(4a-b\right)=0\)

Làm nốt

29 tháng 12 2017

Sửa lại đề bài:  1 / 2a- b 

                   ( MÁY MK KO ĐÁNH ĐC PHÂN SỐ MONG BN THÔNG CẢM)

mới lm đc nhé bn! 

a) ĐKXĐ: bn tự lm nhé ! 

bn biến đổi: 2a3-b+2a-a2b =  (2a-b)  + ( 2a3-a2b) = (2a-b) + a2(2a-b) = (2a-b)(a2+1) 

rồi bn nhân 1 / 2a+b với a2+1 rồi trừ 2 phân thức với nhau sẽ ra 0 => A=0

29 tháng 12 2017

Bạn nào giúp tớ với!

13 tháng 8 2015

\(2a^2+2b^2=5ab\)

\(2a^2-5ab+2b^2=0\)

\(2a^2-4ab-ab-2b^2=0\)

\(2a\left(a-2b\right)-b\left(a-2b\right)=0\)

( 2a -  b )(a-2b ) = 0 

=> 2a - b = 0 hoặc a - 2b = 0 

=> 2a = b và a= 2 b  ( loại vì b > a > 0 )

Thay b = 2a ta có: 

\(\frac{a+b}{a-b}=\frac{2a+a}{a-2a}=\frac{3a}{-a}=-3\)

7 tháng 11 2018

\(2a^2+2b^2=5ab\)

<=>   \(2a^2+2b^2-5ab=0\)

<=>  \(2a^2-4ab-ab+2b^2=0\)

<=>   \(2a\left(a-2b\right)-b\left(a-2b\right)=0\)

<=>  \(\left(2a-b\right)\left(a-2b\right)=0\)

<=>  \(\orbr{\begin{cases}2a=b\\a=2b\end{cases}}\)

Do  \(b>a>0\)

=>  \(2a=b\)

\(A=\frac{a+b}{a-b}=\frac{a+2a}{a-2a}=\frac{3a}{-a}=-3\)

6 tháng 10 2020

Mình xem phép làm câu 1 ạ. 

Đề là?

\(\frac{1}{a}+\frac{1}{c}=\frac{2}{b}\)(1)

Chứng minh tương đương 

\(\frac{a+b}{2a-b}+\frac{c+b}{2c-b}\ge4\)<=> 12ac - 9bc  - 9ab + 6b2 \(\le\)0 ( quy đồng )  (2)

Từ (1) <=> 2ac = ab + bc  Thay vào (2) <=> 6ab + 6bc - 9bc  - 9ab + 6b2  \(\le\)

<=> a + c \(\ge\)2b 

Từ (1) => \(\frac{2}{b}=\frac{1}{a}+\frac{1}{c}\ge\frac{4}{a+c}\)

=> a + c \(\ge\)2b đúng => BĐT ban đầu đúng

Dấu "=" xảy ra <=> a = c = b

 
26 tháng 11 2017

Ta có: \(2\left(a^2+b^2\right)=5ab\Rightarrow2a^2+2b^2-5ab=0\) 0 

\(\Rightarrow2a^2-ab-4ab+2b^2=0\) \(\Rightarrow a\left(2a-b\right)-2b\left(2a-b\right)=0\)

\(\Rightarrow\left(2a-b\right)\left(a-2b\right)=0\) \(\Rightarrow\orbr{\begin{cases}2a-b=0\\a-2b=0\end{cases}\Rightarrow\orbr{\begin{cases}2a=b\\a=2b\end{cases}}}\)

TH1: 2b=a thay vào P ta được:

\(P=\frac{3.2b-b}{2.2b+b}=\frac{6b-b}{4b+b}=\frac{5b}{5b}=1\)

TH2: 2a=b \(\Rightarrow P=\frac{3a-2a}{2a+2a}=\frac{a}{4a}=\frac{1}{4}\)

Vậy \(\orbr{\begin{cases}P=1\\P=\frac{1}{4}\end{cases}}\)

18 tháng 9 2019

bạn ơi, mình sửa lại nhá.

a>b>0 => a=2b (không có th b=2a)

=> P=1

23 tháng 2 2015

Ta có : 2(a2 +b2) = 5ab <=> 2a2 - 5ab + 2b2 = 0 <=> 2a2 - 4ab - ab + 2b2 =0 <=> 2a(a - 2b) - b(a - 2b) =0

<=> (2a - b)(a - 2b) = 0 <=> a = 2b hay b = 2a

Vì a > b > 0 nên chỉ xảy ra trường hợp a = 2b. Do đó \(P=\frac{3.2b-b}{2.2b+b}=\frac{5b}{5b}=1\)

 

29 tháng 11 2016

\(4a^2+b^2=5ab\)

\(4a^2-5ab+b^2=0\)

\(4a^2-4ab-ab+b^2=0\)

\(4a\left(a-b\right)-b\left(a-b\right)=0\)

\(\left(a-b\right)\left(4a-b\right)=0\)

\(\left[\begin{array}{nghiempt}a-b=0\\4a-b=0\end{array}\right.\)

\(\left[\begin{array}{nghiempt}a=b\\4a=b\end{array}\right.\)

\(2a>b>0\)

\(\Rightarrow a=b\)

Thay a = b vào M, ta có:

\(M=\frac{b\times b}{4b^2-b^2}\)

\(=\frac{b^2}{3b^2}\)

\(=\frac{1}{3}\)

Vậy . . .

NV
30 tháng 3 2019

\(2\left(a^2+b^2\right)=5ab\Leftrightarrow2a^2-5ab+2b^2=0\)

\(\Leftrightarrow2a^2-4ab-ab+2b^2=0\Leftrightarrow2a\left(a-2b\right)-b\left(a-2b\right)=0\)

\(\Leftrightarrow\left(2a-b\right)\left(a-2b\right)=0\Leftrightarrow\left[{}\begin{matrix}2a=b\\a=2b\end{matrix}\right.\)

TH1: \(2a=b\Rightarrow P=\frac{3a-2a}{2a+2a}=\frac{a}{4a}=\frac{1}{4}\)

TH2: \(a=2b\Rightarrow P=\frac{6b-b}{4b+b}=\frac{5b}{5b}=1\)