Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ab+bc+ca
=a0+b+b0+c+c0+a
=(a0+a)+(b0+b)+(c0+c)
=aa+bb+cc
Mặt khác: aa chia hết cho 11
bb chia hết cho 11
cc chia hết cho 11
=> A chia hết cho 11
Ta có: A=ab+bc+ca
=10a+b+10b+c+10c+a
=(10a+10b+10c)+(a+b+c)
=10(a+b+c)+(a+b+c)
=11(a+b+c)\(⋮\)11
=>ĐPCM
\(A=\overline{ab}+\overline{bc}+\overline{ca}\)
\(\Rightarrow A=10a+b+10b+c+10c+a\)
\(\Rightarrow A=\left(10a+a\right)+\left(10b+b\right)+\left(10c+c\right)\)
\(\Rightarrow A=11a+11b+11c\)
\(\Rightarrow A=11\left(a+b+c\right)\)
Vì \(11⋮11\)
\(\Rightarrow11\left(a+b+c\right)⋮11\)
\(\Rightarrow A⋮11\left(đpcm\right)\)
a) vì số 17x10101=171717.
Nên 171717 luôn chia hết cho 17.
b) Vì số 11 nhân với số nào có một chữ số thì cũng được số có hai chữ số giống nhau mà aa là sô có hai chữ số giống nhau .
Nên aa chia hết cho 11.
c) Giống như bài b số có hai chữ số giống nhau thì chia hêt cho 11. Mà ab+ba cũng bằng số có hai chữ số giống nhau.
Nên ab+ba chia hết cho 11.
A = ab + bc + ca . Ta có :
ab + bc + ca = a x 10 + b + b x 10 + c + c x 10 + a
= ( a x 10 + a ) + ( b x 10 + b ) + ( c x 10 + c )
= a x ( 10 + 1 ) + b x ( 10 + 1 ) + c x ( 10 + 1 )
= a x 11 + b x 11 + c x 11
= ( a + b + c ) x 11
Vì 11 chia hết cho 11 nên ( a + b + c ) x 11 chia hết cho 11 . Suy ra ab + bc + ca bằng số chia hết cho 11 .
Do đó A chia hết cho 11 .
một số chia hết cho 9 nếu tổng các chữ số của nó chia hết cho 9
A = 101112...99
xét B = 10 + 11 + 12 +..+ 99
trong B có (99-10)+1 = 90 số hạng, được chia thành 45 cặp có tổng là 109
(đó là: 10+99 = 11+98 = .. = 109)
Vậy B = 109x45 chia hêt cho 9 => A chia hết cho 9
Trả lời
a)Số 171717 luôn chia hết cho 17, vì:
17.10101=171717
Trong tích có số 17 thì tích đó chia hết cho 17.
b)aa chia hết cho 11, vì:
a.11=aa.
a) Ta có 171717 = 170 000 + 1700 + 17
= 17 x 10000 + 17 x 100 + 17
= 17 x (10 000 + 100 + 1)
= 17 x 10 101 \(⋮\)17
=> 171717 \(⋮\)17 (đpcm)
b) Ta có : aa = a x 11 \(⋮\)11
=> aa \(⋮\)11 (đpcm)
c) Ta có : ab + ba = a0 + b + b0 + a
= 10 x a + b + 10 x b + a
= (10 x a + a) + (10 x b + b)
= 11 x a + 11 x b
= 11 x (a + b) \(⋮\)11
=> ab + ba \(⋮\)11 (đpcm)
Lời giải:
Ta thấy với $a$ là số tự nhiên bất kỳ thì $a$ và $S(a)$ luôn có cùng số dư khi chia cho 9 nên:
$a-S(a)\vdots 9$
Tương tự với số tự nhiên $2a$ cũng vậy, $2a-S(2a)\vdots 9$
Suy ra:
$(2a-S(2a))-(a-S(a))\vdots 9$
Hay $a-(S(2a)-S(a))\vdots 9$
Hay $a\vdots 9$
\(A=\overline{ab}+\overline{bc}+\overline{ca}\)
\(=10a+b+10b+c+10c+a\)
\(=11a+11b+11c\)
\(=11.\left(a+b+c\right)⋮11\)
\(\Rightarrow A⋮11\)
Ta có : A = ab + bc + ca
= 10 x a + b + 10 x b + c + 10 x c + a
= (10 x a + 10 x b + 10 x c) + (a + b + c)
= 10 x (a + b + c) + (a + b + c)
= (a + b + c) x (10 + 1)
= (a + b + c) x 11
=> A \(⋮\)11 (đpcm)