Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(A=\frac{6n+9}{3n+2}=\frac{6n+4+5}{3n+2}=2+\frac{5}{3n+2}\)là số nguyên khi \(\frac{5}{3n+2}\)là số nguyên
suy ra \(3n+2\inƯ\left(5\right)=\left\{-5,-1,1,5\right\}\Leftrightarrow n\in\left\{-\frac{7}{3},-1,-\frac{1}{3},1\right\}\)mà \(n\)nguyên suy ra
\(n\in\left\{-1,1\right\}\).
Để A thuộc Z
=> 6n - 1 chia hết cho 3n + 2
6n + 4 - 4 - 1 chia hết cho 3n + 2
2.(3n + 2) - 5 chia hết cho 3n + 2
=> 5 chia hết cho 3n + 2
=> 3n + 2 thuộc Ư(5) = {1 ; -1; 5 ; -5}
Ta có bảng sau :
3n + 2 | 1 | -1 | 5 | -5 |
n | -1/3 | -1 | 1 | -7/3 |
Để A thuộc Z thì 6n-1 phải chia hết cho 3n+2
suy ra 6n+4-5 sẽ chia hết cho 3n+2
mà 6n+4 chia hết cho 3n+2
suy ra 5 chia hết cho 3n+2
suy ra 3n+2 thuộc tập hợp có:-5;-1;1;5
suy ra 3n thuộc tập hợp có -7;-3;-2;3
vậy n thuộc tập hợp có 2 phần tử là -1;1
Ta có: \(A=\frac{6n-1}{3n+2}=\frac{6n+4-5}{3n+2}=2-\frac{5}{3n+2}\). Để A có giá trị nhỏ nhất (n thuộc N) thì \(\frac{5}{3n+2}\) đạt giá trị lớn nhất.
-> 3n+2 đạt giá trị tự nhiên nhỏ nhất
-> 3n đạt giá trị tự nhiên nhỏ nhất
-> n là số tự nhiên nhỏ nhất
-> n = 0
=) 6n-1 \(⋮\)3n+2
=) [ 6n-1-(3n+2)] \(⋮\)3n+2
=) [ 6n-1-2(3n+2)] \(⋮\)3n+2
=) [ 6n-1-(6n+4)] \(⋮\)3n+2
=) 6n-1-6n-4 \(⋮\)3n+2
=) ( 6n-6n ) - ( 1 - 4 ) \(⋮\)3n+2
=) -5 \(⋮\)3n+2
=) 3n+2 \(\in\)Ư ( -5 )
rồi bạn tìm ước của 5 và tìm n
a)Ta có:6n-1/2n+2=6n+4-5/3n+2=6n+4/3n+2-5/3n+2=2-5/3n+2
Ta thấy 2 là số nguyên vậy 5/3n-2 phải là số nguyên để 6n-1/3n+2 là số nguyên
3n-2 là Ư(5)={-1;1-5;5}
Với 3n-2=-1 suy ra 3n=-1+2=1 suy ra n=0,3..333(không thỏa mãn điều kiện số nguyên)
...............1............3n=1+2=3 ...........n=1(thỏa mãn điều kiện)
...............-5...........3n=-5+1=4............n=1,33..3(không t/m đ/k số nguyên)
...............5..............3n=5+1=5............n=2(t/m đ/k số nguyên)
Vậy n=1;2
(6n-1)/(3n+2) = 2/3
<=> 3(6n-1)=2(3n+2)
<=> 18n-3=6n+4
<=> 12n=7 => n=7/2
Đs: n=7/2
Minh thich Fairy Tail lam