K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Ta có :

A = 50 + 51 + 52 + ... + 52010 + 52011

=> 5A = 51 + 52 + 53 + ... + 52012

=> 5A - A = ( 51 + 52 + 53 + ... + 52012 ) - ( 50 + 51 + 52 + ... + 52010 + 52011 )

=> 4A = 22012 - 50 = 52012 - 1

=> 4A + 1 = ( 52012 - 1 ) + 1 = 52012 llalàlà 1 lũy thừa của 5

b) Phần a ta đã tính được 4A + 1 = 52012

Mà 4A + 1 = 5x

=> 5x = 52012

=> x = 2012

11 tháng 10 2018

\(A=5+5^2+5^3+...+5^{2016}\)

\(5A=5^2+5^3+5^4+...+5^{2017}\)

\(\rightarrow5A-A=5^{2017}-5\)

\(4A=5^{2017}-5\)

\(\Rightarrow4A+5=5^{2017}-5+5\)

Mà \(4A+5=5^x\)

\(\Rightarrow5^x=5^{2017}\)

Vậy \(x=2017\)

22 tháng 8 2019

cau nay kho qua bang a

22 tháng 8 2019

A=5+52+53+...+5100 = (5+52)+(53+54)+...+(599+5100)

A=(5+52)+52.(5+52)+54.(5+52)+...+598.(5+52)

A=30+30.52+30.54+...+30.598 = 30.(1+52+54+...+598)\(⋮\)30

=>A\(⋮\)6

25 tháng 7 2019

a. 52 + (x+3) = 52

=> x + 3    = 52 - 52

=>  x + 3   =  0

=>  x  = -3

25 tháng 7 2019

b. 23 + (x-32) = 53 - 43

=> 8 + (x-9) =  125 - 64

=> x - 9 = 125 - 64 - 8

=> x - 9 =  53

=> x    =  53 + 9

=> x    =   62

21 tháng 6 2019

a, \(3^4\div3^2-\left[120-\left(2^6.2+5^2.2\right)\right]\)

\(=3^2-\left\{120-\text{[}2.\left(2^6+5^2\right)\text{]}\right\}\)

\(=3^2-\left(120-2\cdot89\right)\)

\(=9--58=9+58=67\)

21 tháng 6 2019

1. \(a,3^4:3^2-\left[120-(2^6\cdot2+5^2\cdot2)\right]\)

\(=3^2-\left[120-\left\{(2^6+5^2)\cdot2\right\}\right]\)

\(=3^2-\left[120-\left\{(64+25)\cdot2\right\}\right]\)

\(=9-\left[120-89\cdot2\right]\)

\(=9-\left[120-178\right]=9-(-58)=67\)

b, Tương tự như bài a

2.a,\(4^x\cdot5+4^2\cdot2=2^3\cdot7+56\)

\(\Leftrightarrow4^x\cdot5+16\cdot2=8\cdot7+56\)

\(\Leftrightarrow4^x\cdot5+32=56+56\)

\(\Leftrightarrow4^x\cdot5+32=112\)

\(\Leftrightarrow4^x\cdot5=80\)

\(\Leftrightarrow4^x=16\Leftrightarrow4^x=4^2\Leftrightarrow x=2\)

\(b,24:(2x-1)^3-2=1\)

\(\Leftrightarrow24:(2x-1)^3=3\)

\(\Leftrightarrow(2x-1)^3=8\)

\(\Leftrightarrow(2x-1)^3=2^3\)

\(\Leftrightarrow2x-1=2\)

Làm nốt là xong thôi

25 tháng 10 2016

1) Chứng minh rằng tích của ba số tự nhiên liên tiếp chia hết cho 6.

=> Gọi n, n+1, n+2( n \(\in\) \(N\)) là 3 số tự nhiên liên tiếp

- Trong hai số tự nhiên liên tiếp luôn có một số chẵn nên:

n.( n+1). ( n+2) \(⋮\)2.

- Trong ba số tự nhiên liên tiếp luôn có một thừa số \(⋮\) 3.

Mà 2 và 3 là hai số nguyên tố cùng nhau.

Suy ra: n.(n+1).(n+2) \(⋮\) 2 . 3 = 6(đpcm).

2) Chứng tỏ: 3n+3 + 3n+1 + 2n+3 + 2n+2 chia hêt cho 6.

=> 3n+3 + 3n+1 + 2n+3 + 2n+2

= 3n. 33 + 3n . 3 + 2n . 23 + 2n . 22

= 3n. (27+3) + 2n . ( 8+4)

= 6. ( 3n . 5 + 2n . 2)

= 6k với k = 3n . 5 + 2n+1

Mà 6k \(⋮\) 6 => ( 3n+3 + 3n+1+ 2n+3 + 2n+2) \(⋮\) 6(đpcm).

3) a) ( 6100 - 1) \(⋮\) 5

b) 2120 - 1110 chia hết cho cả 2 và 5

a) ( 6100 - 1) \(⋮\)5

=> Số 6100 có chữ số tận cùng là 6.

Nên 6100 - 1 là số có chữ số tận cùng là 5( 6-1=5)

=> ( 6100 - 1) \(⋮\)5(đpcm).

b) 2120 - 1110 chia hết cho cả 2 và 5.

=> Số 2120 có chữ số tận cùng là 1.

Số 1110 có chữ số tận cùng cũng là 1.

Nên 2120 - 1110 là số có chữ số tận cùng là 0.

=> 2120 - 1110 chia hết cho 2 và 5(đpcm).

4) Chứng minh rằng:

a) ( 450+108+180) \(⋮\)9

b) ( 1350 +735+255) \(⋮\)5

c) ( 32624+2016) \(⋮\)4

a) ( 450+108+180) \(⋮\)9

=> Vì 450 \(⋮\) 9; 108 \(⋮\) 9; 180 \(⋮\)9

Nên ( 450+108+180) \(⋮\)9.

b) ( 1350+735+255) \(⋮\)5

=> Vì 1350 \(⋮\) 5; 735 \(⋮\)5; 255 \(⋮\)5

Nên ( 1350+735+255) \(⋮\)5.

c) ( 32624 + 2016) \(⋮\) 4

=> Vì 32624 \(⋮\)4; 2016 \(⋮\)4

Nên ( 32624 + 2016) \(⋮\)4.

Đây là câu trả lời của mình, mình chúc bạn học tốt!

25 tháng 10 2016

uk

19 tháng 12 2017

 A = 5+ 5+53 + .......+ 5100 

5A = 52 + 53 + 54 + ... + 5101 

5A - A = ( 52 + 53 + 54 + ... + 5101 ) - ( 5+ 5+53 + .......+ 5100 )

4A = 5101 - 5

suy ra 4A + 5 = 5101 - 5 + 5 = 5101

vậy n = 101

19 tháng 12 2017

5A=\(5^2+5^3+...+5^{101}\)

4A=\(5^{101}-5\)

4A+5=\(5^{101}\)

ma  4A+5=\(5^x\)

suy ra x=101

26 tháng 2 2017

Ta có :

A= 1+3+32+33+......+3119

3A= 3+32+33+....+3119+3120

3A-A=3120-1

A=3120-1/2