Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có :
A = 50 + 51 + 52 + ... + 52010 + 52011
=> 5A = 51 + 52 + 53 + ... + 52012
=> 5A - A = ( 51 + 52 + 53 + ... + 52012 ) - ( 50 + 51 + 52 + ... + 52010 + 52011 )
=> 4A = 22012 - 50 = 52012 - 1
=> 4A + 1 = ( 52012 - 1 ) + 1 = 52012 llalàlà 1 lũy thừa của 5
b) Phần a ta đã tính được 4A + 1 = 52012
Mà 4A + 1 = 5x
=> 5x = 52012
=> x = 2012
\(A=5+5^2+5^3+...+5^{2016}\)
\(5A=5^2+5^3+5^4+...+5^{2017}\)
\(\rightarrow5A-A=5^{2017}-5\)
\(4A=5^{2017}-5\)
\(\Rightarrow4A+5=5^{2017}-5+5\)
Mà \(4A+5=5^x\)
\(\Rightarrow5^x=5^{2017}\)
Vậy \(x=2017\)
a. 52 + (x+3) = 52
=> x + 3 = 52 - 52
=> x + 3 = 0
=> x = -3
b. 23 + (x-32) = 53 - 43
=> 8 + (x-9) = 125 - 64
=> x - 9 = 125 - 64 - 8
=> x - 9 = 53
=> x = 53 + 9
=> x = 62
a, \(3^4\div3^2-\left[120-\left(2^6.2+5^2.2\right)\right]\)
\(=3^2-\left\{120-\text{[}2.\left(2^6+5^2\right)\text{]}\right\}\)
\(=3^2-\left(120-2\cdot89\right)\)
\(=9--58=9+58=67\)
1. \(a,3^4:3^2-\left[120-(2^6\cdot2+5^2\cdot2)\right]\)
\(=3^2-\left[120-\left\{(2^6+5^2)\cdot2\right\}\right]\)
\(=3^2-\left[120-\left\{(64+25)\cdot2\right\}\right]\)
\(=9-\left[120-89\cdot2\right]\)
\(=9-\left[120-178\right]=9-(-58)=67\)
b, Tương tự như bài a
2.a,\(4^x\cdot5+4^2\cdot2=2^3\cdot7+56\)
\(\Leftrightarrow4^x\cdot5+16\cdot2=8\cdot7+56\)
\(\Leftrightarrow4^x\cdot5+32=56+56\)
\(\Leftrightarrow4^x\cdot5+32=112\)
\(\Leftrightarrow4^x\cdot5=80\)
\(\Leftrightarrow4^x=16\Leftrightarrow4^x=4^2\Leftrightarrow x=2\)
\(b,24:(2x-1)^3-2=1\)
\(\Leftrightarrow24:(2x-1)^3=3\)
\(\Leftrightarrow(2x-1)^3=8\)
\(\Leftrightarrow(2x-1)^3=2^3\)
\(\Leftrightarrow2x-1=2\)
Làm nốt là xong thôi
1) Chứng minh rằng tích của ba số tự nhiên liên tiếp chia hết cho 6.
=> Gọi n, n+1, n+2( n \(\in\) \(N\)) là 3 số tự nhiên liên tiếp
- Trong hai số tự nhiên liên tiếp luôn có một số chẵn nên:
n.( n+1). ( n+2) \(⋮\)2.
- Trong ba số tự nhiên liên tiếp luôn có một thừa số \(⋮\) 3.
Mà 2 và 3 là hai số nguyên tố cùng nhau.
Suy ra: n.(n+1).(n+2) \(⋮\) 2 . 3 = 6(đpcm).
2) Chứng tỏ: 3n+3 + 3n+1 + 2n+3 + 2n+2 chia hêt cho 6.
=> 3n+3 + 3n+1 + 2n+3 + 2n+2
= 3n. 33 + 3n . 3 + 2n . 23 + 2n . 22
= 3n. (27+3) + 2n . ( 8+4)
= 6. ( 3n . 5 + 2n . 2)
= 6k với k = 3n . 5 + 2n+1
Mà 6k \(⋮\) 6 => ( 3n+3 + 3n+1+ 2n+3 + 2n+2) \(⋮\) 6(đpcm).
3) a) ( 6100 - 1) \(⋮\) 5
b) 2120 - 1110 chia hết cho cả 2 và 5
a) ( 6100 - 1) \(⋮\)5
=> Số 6100 có chữ số tận cùng là 6.
Nên 6100 - 1 là số có chữ số tận cùng là 5( 6-1=5)
=> ( 6100 - 1) \(⋮\)5(đpcm).
b) 2120 - 1110 chia hết cho cả 2 và 5.
=> Số 2120 có chữ số tận cùng là 1.
Số 1110 có chữ số tận cùng cũng là 1.
Nên 2120 - 1110 là số có chữ số tận cùng là 0.
=> 2120 - 1110 chia hết cho 2 và 5(đpcm).
4) Chứng minh rằng:
a) ( 450+108+180) \(⋮\)9
b) ( 1350 +735+255) \(⋮\)5
c) ( 32624+2016) \(⋮\)4
a) ( 450+108+180) \(⋮\)9
=> Vì 450 \(⋮\) 9; 108 \(⋮\) 9; 180 \(⋮\)9
Nên ( 450+108+180) \(⋮\)9.
b) ( 1350+735+255) \(⋮\)5
=> Vì 1350 \(⋮\) 5; 735 \(⋮\)5; 255 \(⋮\)5
Nên ( 1350+735+255) \(⋮\)5.
c) ( 32624 + 2016) \(⋮\) 4
=> Vì 32624 \(⋮\)4; 2016 \(⋮\)4
Nên ( 32624 + 2016) \(⋮\)4.
Đây là câu trả lời của mình, mình chúc bạn học tốt!
A = 5+ 52 +53 + .......+ 5100
5A = 52 + 53 + 54 + ... + 5101
5A - A = ( 52 + 53 + 54 + ... + 5101 ) - ( 5+ 52 +53 + .......+ 5100 )
4A = 5101 - 5
suy ra 4A + 5 = 5101 - 5 + 5 = 5101
vậy n = 101
5A=\(5^2+5^3+...+5^{101}\)
4A=\(5^{101}-5\)
4A+5=\(5^{101}\)
ma 4A+5=\(5^x\)
suy ra x=101
Ta có :
A= 1+3+32+33+......+3119
3A= 3+32+33+....+3119+3120
3A-A=3120-1
A=3120-1/2