cho a= √ (37 + 20 √ 3) rút gọn A<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7 2021

\(A=\sqrt{37+20\sqrt{3}}\)

\(A=\sqrt{37+10\sqrt{12}}\)

\(A=\sqrt{5^2+10\sqrt{12}+\sqrt{12}^2}\)

\(A=\sqrt{\left(5+\sqrt{12}\right)^2}\)

\(A=\left|5+\sqrt{12}\right|\)

\(A=5+\sqrt{12}\)

15 tháng 3 2020

Nhận xét nào sau đây là sai?

A:Sự oxi hóa chậm là quá trình oxi hóa có kèm theo tỏa nhiệt nhưng không phát sáng

B:Oxi là chất oxi hóa trong các phản ứng hóa học.

C:Sự cháy là sự oxi hóa có kèm theo tỏa nhiệt và không phát sáng.

D:Sự oxi hóa là quá trình tác dụng của một chất với oxi.

# HOK TỐT #

10 tháng 6 2017

A B C D E 1 2 1

Qua B kẻ đường thẳng song song cới AD và cắt tia CA tại E.

Ta có: ^A1=^B1 (So le trong); ^A2=^E (Đồng vị). Mà ^A1=^A2 => ^B1=^E

=> \(\Delta\)BAE cân tại A => AE=AB=2

Sử dụng định lí Ta-lét: \(\frac{AD}{EB}=\frac{AC}{EC}\Rightarrow\frac{1,2}{EB}=\frac{3}{AC+AE}\Rightarrow\frac{1,2}{EB}=\frac{3}{3+2}\Rightarrow\frac{1,2}{EB}=\frac{3}{5}\)

\(\Rightarrow EB=1,2:\frac{2}{5}=\frac{1,2.5}{3}=\frac{6}{3}=2\)\(\Rightarrow AE=AB=EB=2\)

\(\Rightarrow\Delta\)BAE đều \(\Rightarrow\widehat{BAE}=60^0\). Mà ^BAE kề bù với ^BAC

\(\Rightarrow\widehat{BAC}=120^0\).

2 tháng 8 2017

Ta có : a3 + b= (a + b)(a - ab + b)

Thay ab = 4 và a + b = 5

=> a3 + b= 5(5 - 4)

=> a3 + b= 5

Vậy a3 + b= 5

21 tháng 6 2016

Cô hướng dẫn nhé.

1. Nhẩm nghiệm để suy ra nhân tử .

\(27x^3-27x^2+18x-4=27x^3-9x^2-18x^2+6x+12x-4\)

\(=\left(3x-1\right)\left(9x^2-6x+4\right)\)

Xem lại đề câu b, nếu ko ta dùng công thức Cardano.

2.

a. Đặt ẩn phụ.

b. \(B=\left(x+y\right)^2-\left(x+y\right)-12\). Sau đó lại đặt ẩn phụ.

c. Đặt \(x^2+x+1=t\)

d. Ghép: \(\left(x+2\right)\left(x+5\right)\left(x+3\right)\left(x+4\right)+24=\left(x^2+7x+10\right)\left(x^2+7x+12\right)+24\)

Đặt \(x^2+7x+10=t\)

21 tháng 6 2016

2a. Đặt \(x^2+x=t\Rightarrow A=t^2-2t-15=t^2-5t+3t-15=\left(t-5\right)\left(t+3\right)\)

Quay lại biến x , ta có  \(\left(x^2+x-5\right)\left(x^2+x+3\right)\)

17 tháng 8 2018

áp dụng cosi a^2+1>=2a tương tự và cộng vế tương ứng suy ra đpcm

17 tháng 8 2018

\(a^2+b^2+2\ge2\left(a+b\right)\)

\(\Leftrightarrow a^2+b^2+2-2\left(a+b\right)\ge0\)

\(\Leftrightarrow a^2+b^2+2-2a-2b\ge0\)

\(\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2-2b+1\right)\ge0\)

\(\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2\ge0\)( luôn đúng )

Dấu "=" xảy ra khi :

\(\hept{\begin{cases}b-1=0\\b-1=0\end{cases}}\)\(\Leftrightarrow a=b=1\)

Vậy ...

4 tháng 8 2018

\(\left(2x+1\right)^2-2\left(2x+1\right)\left(3-x\right)+\left(3-x\right)^2\)

\(=\left[\left(2x+1\right)-\left(3-x\right)\right]^2\)

\(=\left(3x-2\right)^2\)

p/s: chúc bạn học tốt