Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=3+32+33+...+3100
3A=32+33+...+3101
3A-A=(32+33+...+3101)-(3+32+33+...+3100)
2A=3101-3
2A+3=3101
\(A=3+3^2+3^3+...+3^{100}\)
\(\Rightarrow3A=3.\left(3+3^2+3^3+...+3^{100}\right)\)
\(\Rightarrow3A=3^2+3^3+3^4+...+3^{101}\)
\(\Rightarrow3A-A=2A=\left[3^2+3^3+3^4+...+3^{101}\right]-\left[3+3^2+3^3+...+3^{100}\right]\)\(\Rightarrow2A=3^{101}-3\)
Theo đề bài ta có 2A + 3 = 3n ( \(n\in N\) )
\(\Rightarrow2A+3=3^{101}-3+3=3^n\)
\(\Rightarrow2A+3=3^{101}=3^n\)
\(\Rightarrow3^{101}=3^n\)
\(\Rightarrow101=n\) ( thỏa mãn điều kiện \(n\in N\)
Vậy n = 101
Ta có: A = 3 + 3 2 + 3 3 + . . . + 3 100
=> 3 A = 3 2 + 3 3 + 3 4 + . . . + 3 101
=> 3 A - A = ( 3 2 + 3 3 + 3 4 + . . . + 3 101 ) - ( 3 + 3 2 + 3 3 + . . . + 3 100 )
=> 2 A = 3 2 + 3 3 + 3 4 + . . . + 3 101 - 3 - 3 2 - 3 3 - . . . - 3 100
2 A = 3 101 - 3 <=> 2 A + 3 = 3 101 , mà 2 A + 3 = 3 n
=> n = 101
A=3+32+33+...+399
3A=32+33+...+3100
3A-A=(32+33+...+3100)-(3+32+33+...+399)
2A=3100-3
2A+3=3100
⇒n=100
Đây nè bạn, chúc bạn học tốt :))
A = 3 + 32 + 33+ ... + 399
3A = 3. (3 + 32 + 33+ ... + 399)
3A \(=3^2+3^3+3^4+...+3^{100}\)
3A \(=\left(3^2+3^3+3^4+...+3^{100}\right)-\left(3+3^2+3^3+...+3^{99}\right)\)
2A\(=3^{100}-3\)
Vậy, sau khi tìm đc 2A, ta tìm stn n nha:
2A + 3 = 3n
\(=3^{100}-3+3=3^n\)
⇒\(3^{100}=3^n\)(Vì -3 +3 = 0)
Vậy n = 100
Câu 3:
\(A=3+3^2+...+3^{100}\)
\(3A=3^2+3^3+...+3^{101}\)
\(3A-A=3^2+3^3+...+3^{101}-\left(3+3^2+...+3^{100}\right)\)
\(2A=3^{101}-3\)
Mà: \(2A+3=3^N\)
\(\Rightarrow3^{101}-3+3=3^N\)
\(\Rightarrow3^{101}=3^N\)
\(\Rightarrow N=101\)
Vậy: ...
Câu 1:
\(A=4+2^2+...+2^{20}\)
Đặt \(B=2^2+2^3+...+2^{20}\)
=>\(2B=2^3+2^4+...+2^{21}\)
=>\(2B-B=2^3+2^4+...+2^{21}-2^2-2^3-...-2^{20}\)
=>\(B=2^{21}-4\)
=>\(A=B+4=2^{21}-4+4=2^{21}\) là lũy thừa của 2
Câu 6:
Đặt A=1+2+3+...+n
Số số hạng là \(\dfrac{n-1}{1}+1=n-1+1=n\left(số\right)\)
=>\(A=\dfrac{n\left(n+1\right)}{2}\)
=>\(A⋮n+1\)
Câu 5:
\(A=5+5^2+...+5^8\)
\(=\left(5+5^2\right)+\left(5^3+5^4\right)+\left(5^5+5^6\right)+\left(5^7+5^8\right)\)
\(=\left(5+5^2\right)+5^2\left(5+5^2\right)+5^4\left(5+5^2\right)+5^6\left(5+5^2\right)\)
\(=30\left(1+5^2+5^4+5^6\right)⋮30\)
Bài 1: Ta có: \(B=3+3^2+3^3+...+3^{2005}\)
\(3B=3^2+3^3+3^4+...+3^{2006}\)
\(3A-A=3^{2006}-3\)
Hay \(2A=3^{2006}-3\)
+) Ta có: 2B+3=\(\left(3^{2006}-3\right)+3\)
\(\Rightarrow2B+3=3^{2006}\)
Vậy 2B+3 là lũy thừa của 3
b) Ta có: \(A=3+3^2+...+3^{100}\)
\(3A=3^2+3^3+...+3^{101}\)
\(3A-A=3^{101}-3\)
Hay \(2A=3^{101}-3\)
+) theo đề ra, ta có: \(2A+3=3^n\)
\(\Rightarrow\left(3^{101}-3\right)+3=3^{101}=3^n\)
\(\Rightarrow n=101\)
Mỏi tay wóa!!! Học tốt nha^^
B1
Có B=3+32+...+32005
=>3B=32+33+...+32006
=>2B=3B-B=32006-3
=>2B+3=32006-3+3=32006
=>Đpcm
B2
Có A=3+32+..+3100
=>3A=32+33+...+3101
=>2A=3A-A=3101-3
=>2A+3=3101-3+3=3101=3n
=>n=101
\(A=3+3^2+3^3+.....+3^{99}\)
\(=>3^2A=3^2\left(3+3^2+......+3^{99}\right)\)
\(=>9A-A=\left(3^2+3^3+3^4+.....+3^{100}\right)-\left(3+3^2+....+3^{99}\right)\)
\(=>8A=3^{100}-3\)
\(=>A=\frac{3^{100}-3}{8}\)
Ta có : \(2.\frac{3^{100}-3}{2}+3=3^n\)
\(=>3^{100}-3+3=3^n\)
\(=>3^{100}=3^n\)
\(=>n=100\)
n=100 thì 2A+3=3