Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 8⁸ + 2²⁰
= (2³)⁸ + 2²⁰
= 2²⁴ + 2²⁰
= 2²⁰.(2⁴ + 1)
= 2²⁰.17 ⋮ 17
Vậy A ⋮ 17
a) Ta xét thấy:
21:7 dư 2; 22:7 dư 4; 23 chia 7 dư 1;24:7 dư 2;...
=> cứ 3 lũy thừa thì số dư lặp lại 1 lần
87= 221=> 87 : 7 dư 1
218: 7 dư 1(tương tự như trên)
=> 87 - 218 chia hết cho 7
Mà 2 số đều chia hết cho 2
=> 87- 218 chia hết cho 14
VÂNG "CHỊ" BÁCH QUÁ ĐỈNH. CHỊ ẤY CỨ GIẢI BÀI NÀY ĐÉN BÀI KHÁC
a,10^33+8 chia hết cho 18
1033 + 8 = 10...000 ( 33 chữ số 0 ) + 8 = 10...008 ( 32 chữ số 0 ) , có :
- Chữ số tận cùng 8 chia hết cho 2 . ( 1 )
- Tổng các chữ số : 1 + 0 +...+ 0 + 0 + 8 = 9 chia hết cho 9 . ( 2 )
Từ ( 1 ) và ( 2 ) => 10^33 + 8 chia hết cho 18 .
b,10^10+14 chia hết cho 6
1010 + 14 = 10...000 ( 10 chữ số 0 ) + 14 = 10...014 ( 8 chữ số 0 ) , có :
- Chữ số tận cùng 4 chia hết cho 2 . ( 1 )
- Tổng các chữ số : 1 + 0 +...+ 0 + 1 + 4 = 6 chia hết cho 3 . ( 2 )
Từ ( 1 ) và ( 2 ) => 10^10 + 14 chia hết cho 6 .
Còn lại bn tự làm nha .
Ta có
+) \(10^{33}+8=100......00000008⋮9\) (1)
( 33 chữ số 0 )
+) 1033 chia hết cho 2
8 chia hết cho 2
=> 1033+8 chia hết cho 2 (2)
Mà (2;3)=1
Từ (1) và (2) => \(10^{33}+8⋮2.9=18\)
b) Ta có
+) \(10^{10}+14=100...014⋮3\) (4)
( 9 chữ số 0)
+) 1010 chia hết cho 2
14 chia hết cho 2
=> 1010+14 chia hết cho 2 (4)
Mà (2;3)=1
Từ (1) và (2)
=>\(10^{10}+14⋮2.3=6\)
c)
MÌnh sửa một chút 119=>119
Có lẽ do đánh vội nên bạn viết sai :))
Ta thấy A có 20 số hạng
Mà mỗi số hạng đều có tận cùng là 1
=>\(A=\left(\overline{....1}\right)+\left(\overline{....1}\right)+.....+\left(\overline{....1}\right)=\left(\overline{....20}\right)\)
chia hết cho 5
d)
\(B=2\left(1+2\right)+2^3\left(1+2\right)+....+2^{59}\left(1+2\right)=3\left(2+2^3+....+2^{59}\right)⋮3\left(5\right)\)
\(B=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)=7\left(2+2^4+....+2^{58}\right)⋮7\)
\(B=2\left(1+2^2\right)+2^2\left(1+2^2\right)+....+2^{58}\left(1+2^2\right)=5\left(2+2^2+...+2^{58}\right)⋮5\left(6\right)\)
Mà (3;5)=1
Từ (5) và (6)
=>\(B⋮3.5=15\)
a: \(A=\left(1+3\right)+...+3^{10}\left(1+3\right)\)
\(=4\left(1+...+3^{10}\right)⋮4\)
\(A=\left(3+3^2+3^3\right)+...+\left(3^{58}+3^{59}+3^{60}\right)\\ A=3\left(1+3+3^2\right)+...+3^{58}\left(1+3+3^2\right)\\ A=\left(1+3+3^2\right)\left(3+...+3^{58}\right)\\ A=13\left(3+...+3^{58}\right)⋮13\)
\(M=\left(2+2^2+2^3+2^4\right)+...+\left(2^{17}+2^{18}+2^{19}+2^{20}\right)\\ M=\left(2+2^2+2^3+2^4\right)+...+2^{16}\left(2+2^2+2^3+2^4\right)\\ M=\left(2+2^2+2^3+2^4\right)\left(1+...+2^{16}\right)\\ M=30\left(1+...+2^{16}\right)⋮5\)
Đề sai: \(A=32^2+2^6-32\)
\(=32^2+32-32\)
\(=32^2\)không chia hết cho 33
Ta có:
A= 322+26-32 = 322+64-32
A= 322+32
A= 32.(32+1)= 32.33 chia hết cho 33
Mà A = 32.33
=> A chia hết cho 33 (đpcm)
Vậy A chia hết cho 33