K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
22 tháng 4 2023

Lời giải:
$3^{2022}+3^{2020}-(2^{2020}+2^{2020})$

$=3^{2020}(3^2+1)-2.2^{2020}=10.3^{2020}-2^{2021}$

Ta thấy: $10.3^{2020}\vdots 10$, còn $2^{2021}\not\vdots 10$ nên $10.3^{2020}-2^{2021}\not\vdots 10$ 

Bạn xem lại đề.

13 tháng 11 2023

1: \(A=2+2^2+2^3+2^4+...+2^{97}+2^{98}+2^{99}+2^{100}\)

\(=2\left(1+2+2^2+2^3\right)+...+2^{97}\left(1+2+2^2+2^3\right)\)

\(=15\left(2+2^5+...+2^{97}\right)\)

\(=30\left(1+2^4+...+2^{96}\right)⋮30\)

2:

\(B=3+3^2+3^3+...+3^{2022}\)

\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{2021}+3^{2022}\right)\)

\(=\left(3+3^2\right)+3^2\left(3+3^2\right)+...+3^{2020}\left(3+3^2\right)\)

\(=12\left(1+3^2+...+3^{2020}\right)⋮12\)

 

21 tháng 8 2021

b) A=2+22+23+...+220

A=(2+22)+(23+24)+...+(219+220)

A=3.2+3.23+...+3.219

A=3.(2+23+25+...+219)

⇒A⋮3

phần c) làm tương tự

21 tháng 8 2021

Câu a thì sao ạ

18 tháng 9 2023

a + 5b = (a - b) + 6b = 6 + 6b = 6(1 + b) chia hết cho 6

a - 13b = (a - b) - 12b = 6 - 12b = 6(1 - 2b) chia hết cho 6

a: Ta có: \(A=2+2^2+2^3+...+2^{20}\)

\(=2\left(1+2+2^2+...+2^{19}\right)⋮2\)

b: Ta có: \(A=2+2^2+2^3+...+2^{20}\)

\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{19}\left(1+2\right)\)

\(=3\cdot\left(2+2^3+...+2^{19}\right)⋮3\)

21 tháng 8 2021

e cảm ơn ạ

23 tháng 7 2017

Gọi 2 số tự nhiên liên tiếp đó là a;a+1

Ta có:

tổng là:

\(a+a+1=2a+1\)

\(\left\{{}\begin{matrix}2a⋮2\\1⋮̸2\end{matrix}\right.\)

\(\)\(\Rightarrow2a+1⋮̸2\rightarrowđpcm\)

23 tháng 7 2017

Làm luôn câu b cho mk đi

21 tháng 4 2023

Trường nào đó?

 

 

DT
24 tháng 10 2023

A = ( 1 + 3^2) + (3^4 + 3^6) + ... + (3^2016 + 3 ^2018 ) + 3 ^ 2020

= 10 + 3^4(1+3^2) + .... + 3^2016.(1+3^2) + 3^2020

= 10.(1+3^4+...+3^2016) + 3^2020

Mà : 3^n có tận cùng là : 1,3,9,7

Do đó 3 ^2020 không chia hết cho 10

Lại có 10.(1+3^4+...+3^2016) chia hết cho 10

=> A không chia hết cho 10

24 tháng 10 2023

A=(1+32)+(34+36)+ ... + (32018+32020)

  =(1+32)+ 34(1+32)+....+32018(1+32)

  =(1+32) (1+34+....+32018)

  =10 (1+34+....+32018) ⋮10 ( do 10 ⋮10)

Vậy A=1+32+34+36+ ... +32020 ⋮ 10 (đpcm)

 

15 tháng 7 2016

a)a-b=(a+5b)-6b

Do a-b chia hết cho 6 

6b cũng chia hết cho 6

=>a+5b phải chia hết cho 6(đpcm)

b)a-b=(a+17b)-18b

Do a-b chia hết cho 6 

18b cũng chia hết cho 6

=>a+17b phải chia hết cho 6(đpcm)

c)(a-b)-12b=a-13b

Do a-b chia hết cho 6 

12b cũng chia hết cho 6

=>a-13b phải chia hết cho 6(đpcm)

12 tháng 7 2017

a) \(\text{a-b=(a+5b)-6b}\)

Do \(a-b⋮6\)

\(6b⋮6\)

\(\Rightarrow a+5b⋮6\)(đpcm)

b)\(\text{a-b=(a+17b)-18b}\)

Do \(a-b⋮6\)

\(18b⋮6\)

\(\Rightarrow a+17b⋮6\)(đpcm)

c) \(\text{(a-b)-12b=a-13b}\)

Do \(a-b⋮6\)

\(12b⋮6\)

\(\Rightarrow a-13b⋮6\)(đpcm)

19 tháng 9

calibudaicho