\(^{3^1+3^2+3^3+...+3^{2015}}\). Tìm n biết rằng: 2A + 3 =\(...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2016

A = 31+32 + 33+...32015

\(\Rightarrow\)3A= 32 + 33+...+32016

\(\Rightarrow\)2A = 3A -A = 32016 -3

\(\Rightarrow\)2A +3 = 32016

vậy n = 2016

13 tháng 8 2018

Ta có :

      A= 31+32+33+34+....+32015

=>3A= 32+33+34+35+....+32016

=>3A- A=(32+33+34+35+....+32016) - (31+32+33+34+....+32015)

=>2A=32016-3

=>2A +3 =32016

Vậy n = 2016

9 tháng 9 2016

Ta có

\(B=3+3^2+3^3+....+3^{2015}\)

\(3B=3^2+3^3+....+3^{2016}\)

\(\Rightarrow3B-B=\left(3^2+3^3+....+3^{2016}\right)-\left(3+3^2+....+3^{2015}\right)\)

\(\Rightarrow2B=3^{2016}-3\)

\(\Rightarrow2B+3=3^{2016}\)

9 tháng 9 2016

Ta có:
\(B=3+3^2+...+3^{2015}\)

\(\Rightarrow3B=3^2+3^3+3^4+...+3^{2016}\)

\(\Rightarrow3B-B=\left(3^2+3^3+...+3^{2016}\right)-\left(3+3^2+...+3^{2016}\right)\)

\(\Rightarrow2B=3^{2016}-3\)

Thay 2B vào \(2B+3=3^n\) ta có:

\(3^{2016}-3+3=3^n\)

\(\Rightarrow3^{2016}=3^n\)

\(\Rightarrow n=2016\)

Vậy n = 2016
 

30 tháng 9 2017

3/ ta để ý thấy ở số mũ sẽ có thừa số 1000-103=0

nên số mũ chắc chắn bằng 0

mà số nào mũ 0 cũng bằng 1 nên A=1

5/ vì |2/3x-1/6|> hoặc = 0

nên A nhỏ nhất khi |2/3x-6|=0

=>A=-1/3

6/ =>14x=10y=>x=10/14y

23x:2y=23x-y=256=28

=>3x-y=8

=>3.10/4y-y=8

=>6,5y=8

=>y=16/13

=>x=10/14y=10/14.16/13=80/91

8/106-57=56.26-56.5=56(26-5)=59.56 

có chứa thừa số 59 nên chia hết 59

4/ tính x 

sau đó thế vào tinh y,z

23 tháng 9 2017

Ta có:

\(A=1+3+3^2+3^3+....+3^{2015}\)

\(\Rightarrow3A=3\left(1+3+3^2+3^3+.....+3^{2015}\right)\)

\(\Rightarrow3A=3+3^2+3^3+3^4+......+3^{2016}\)

\(\Rightarrow3A-A=\left(3+3^2+3^3+3^4+....+3^{2016}\right)-\left(1+3+3^2+3^3+....+3^{2015}\right)\)

\(\Rightarrow2A=3^{2016}-1\)

Do đó, \(2A+1=3^{2016}-1+1=3^{2016}=\left(3^{1008}\right)^2\)

Vậy A là số chính phương.

23 tháng 9 2017

A = 1 + 3^2 +3^3+...+3^2015

3A = 3 +3^3+3^4 +....+3^2016

3A - A =( 3+ 3^3 + 3^4+...+3^2016)- ( 1 + 3^2+....+3^2015)

2A= ...................... tự làm tiếp nhé

A = 3 + 32 + 33 +...+32019

-> 3A = 3 (3 + 32 + 33 +...+32019)

-> 3A = 32 + 33 + 34 +...+32020

-> 3A - A = (32 + 3+ 34 +...+ 32020) - (3 + 32 + 33 +...+32019)

-> 2A = 32020 - 3

\(\rightarrow A=\frac{3^{2020}-3}{2}\)

Ta có: \(2A+3=3^n\)

\(\Rightarrow2\cdot\frac{3^{2020}-3}{2}+3=3^n\)

\(\Rightarrow3^{2020}-3+3=3^n\)

=> 32020 = 3n => n = 2020

30 tháng 12 2019

Trl:

\(A=3+3^2+3^3+...+3^{2018}\)

\(3A=3^2+3^3+3^4+...+3^{2017}+3^{2018}\)

\(\Rightarrow3A-A=\left(3^2+3^3+3^4+...+3^{100}+3^{101}\right)-\left(3+3^2+3^3+3^4+...+3^{100}\right)\)

\(\Rightarrow2A=3^{101}-3\)

\(\Rightarrow2A+3=3^{101}\)

\(\Rightarrow n=101\)

Vậy n = 101

Hc tốt

16 tháng 11 2017

Bài đầu đơn giản rồi , tự tính nhé <3

Bài 2

\(3^{n+2}-2^{n+2}+3^n-2^n\)

\(=3^n.3^2-2^n.2^2+3^n-2^n\)

\(=\left(3^n.3^2+1\right)-\left(2^n.2^2+1\right)\)

\(=3^n.10-2^n.5\)

\(=3^n.10-2^{n-1}.10\)

\(=10.\left(3^n-2^{n-1}\right)⋮10\)

Vậy.....

26 tháng 1 2016

Ta có : \(A=3+3^2+3^3+...+3^{2009}\)

=> \(3A=3^2+3^3+3^4+...+3^{2009}+3^{2010}\)

=> \(3A-A=\left(3^2+3^3+...+3^{2010}\right)-\left(3+3^2+...+3^{2009}\right)\)

=> \(2A=3^{2010}-3\)

=> \(2A+3=3^{2010}-3+3\)

=> \(2A+3=3^n=3^{2010}\)

=>  \(n=2010\)

26 tháng 1 2016

biết đáp án rồi