K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(A=\left(1+3+3^2+3^3\right)+...+3^{117}\left(1+3+3^2+3^3\right)\)

\(=40\left(1+...+3^{117}\right)⋮40\)

1 tháng 1 2022

Bạn ơi hình như bạn làm hơi tắt thì phải.

8 tháng 2 2022

\(A=3+3^2+3^3+...+3^{2012}\\ A=\left(3+3^2+3^3+3^4\right)+...+\left(3^{2009}+3^{2010}+3^{2011}+3^{2012}\right)\\ A=120+...+3^{2008}.120\\ A=120.\left(1+...+3^{2008}\right)⋮120\)

8 tháng 2 2022

undefined

3 tháng 12 2021

TL

a)    5x + 20 = 110      

<=> x = 90 : 5 = 18

 b) x + 18 = - 13 

 <=> x = - 31

  c) 120 - x =  50   

   <=> x = 70     

 d) 10 - x = -29  

     <=>  x = 39

e) - x + 31 = 61

<=> x = -30

f) -85 - x = --70

<=> x = 15

Khi nào rảnh vào kênh H-EDITOR xem vid nha!!! Thanks!

8 tháng 7 2015

a) (-x+31)-39=-69

   -x+31=-69+39

  -x+31=-30

-x=-30-31

-x=-61

=> x=61

b) -120-(-30-x)=-50

     -30-x=-120-(-50)

     -30-x=-70

         x=-30-(-70)

        x=40

c) 17+x- [ 352-(-400)]=-32

                 17+x-752=-32

                     17+x=-32+752

                      17+x=720

                           x=720-17

                            x=703

đúng nha

 

 

 

 

 

 

 

 

17 tháng 4 2023

Áp dụng tính chất : Nếu \(\dfrac{a}{b}< 1\) thì \(\dfrac{a}{b}< \dfrac{a+n}{b+n}\) ( a; b; n ϵ N , b; n ≠ 0 )

Ta có \(\dfrac{2023^{31}+5}{2023^{32}+5}< 1\)

⇒ \(B=\dfrac{2023^{31}+5}{2023^{32}+5}< \dfrac{2023^{31}+5+2018}{2023^{32}+5+2018}=\dfrac{2023^{31}+2023}{2023^{32}+2023}=\dfrac{2023\left(2023^{30}+1\right)}{2023\left(2023^{31}+1\right)}=\dfrac{2023^{30}+1}{2023^{31}+1}=A\)Vậy A > B

17 tháng 4 2023

Ta có 2023A = \(\dfrac{2023.\left(2023^{30}+5\right)}{2023^{31}+5}=\dfrac{2023^{31}+5.2023}{2023^{31}+5}\)

\(=1+\dfrac{2022.5}{2023^{31}+5}\)

Lại có 2023B = \(\dfrac{2023.\left(2023^{31}+5\right)}{2023^{32}+5}=\dfrac{2023^{32}+2023.5}{2023^{32}+5}\)

\(=1+\dfrac{2022.5}{2023^{32}+5}\)

Dễ thấy 202331 + 5 < 202332 + 5

\(\Leftrightarrow\dfrac{2022.5}{2023^{31}+5}>\dfrac{2022.5}{2023^{32}+5}\)

\(\Leftrightarrow1+\dfrac{2022.5}{2023^{31}+5}>1+\dfrac{2022.5}{2023^{32}>5}\)

\(\Leftrightarrow2023A>2023B\Leftrightarrow A>B\)

28 tháng 12 2023

Số số hạng của M:

2023 - 0 + 1 = 2024 (số)

Do 2024 ⋮ 4 nên ta có thể nhóm các số hạng của M thành từng nhóm mà mỗi nhóm có 4 số hạng như sau:

M = (3⁰ + 3¹ + 3² + 3³) + (3⁴ + 3⁵ + 3⁶ + 3⁷) + ... + (3²⁰²⁰ + 3²⁰²¹ + 3²⁰²² + 3²⁰²³)

= 40 + 3⁴.(1 + 3 + 3² + 3³) + ... + 3²⁰²⁰.(1 + 3 + 3² + 3³)

= 40 + 3⁴.40 + ... + 3²⁰²⁰.40

= 40.(1 + 3⁴ + ... + 3²⁰²⁰)

= 20.2.(1 + 3⁴ + ... + 3²⁰²⁰) ⋮ 20

Vậy M là bội của 20

9 tháng 3 2019

1/30 + 1/31 + 1/32 + ... + 1/40 > 1/40 + 1/40 + 1/40 + ... + 1/40 (10 số hạng) = 10/40 = 1/4

1/41 + 1/42 + ... + 1/60 > 1/60 + 1/60 + ... + 1/60 (20 số hạng) = 20/60 = 1/3

=> A > 1/3 + 1/4 = 7/12 

=> đpcm

9 tháng 3 2019

sorry

8 tháng 9 2017

A = 235

Tck mk nhé !

8 tháng 9 2017

sao lại 2 lần 31 the kia !!!!

28 tháng 12 2022

loading...