\(⋮126\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 7 2018

\(S=\left(5+5^4\right)+\left(5^2+5^5\right)+\left(5^3+5^6\right)+...+\left(5^{117}+5^{120}\right).\)

S có 120 số hạng nên có 120:2=60 cặp ghép như trên

\(S=5\left(1+5^3\right)+5^2\left(1+5^3\right)+5^3\left(1+5^3\right)+...+5^{117}\left(1+5^3\right)\)

\(S=126\left(5+5^2+5^3+...+5^{60}\right)\) chia hết cho 126

24 tháng 7 2018

\(S=\left(5+5^4\right)+\left(5^2+5^5\right)+\left(5^3+5^6\right)+...+\left(5^{117}+5^{120}\right).\)

S có 120 số hạng nên có 120:2=60 cặp ghép như trên

\(S=5\left(1+5^3\right)+5^2\left(1+5^3\right)+5^3\left(1+5^3\right)+...+5^{117}\left(1+5^3\right)\)

\(S=126\left(5+5^2+5^3+...+5^{60}\right)\) chia hết cho 126

30 tháng 10 2018

a, tính 5S rồi lấy 5S trừ S là xong

b, chịu

30 tháng 10 2018

a) \(S=5+5^2+5^3+...+5^{2006}\)

\(5S=5^2+5^3+5^4+...+5^{2007}\)

\(5S-S=4S=5^{2007}-5\Rightarrow S=\frac{5^{2007}-5}{4}\)

b)Đề hơi sai sai. Nếu như đề là chứng minh S chia hết cho 155 thì mới làm được =,=

8 tháng 1 2019

a) Ta có:

 S=51+52+53+...+596 gồm 96 số hạng

   =(51+52+...+56)+(57+58+...+512)+...+(591+592+...+596)

   =(51+52+...+56)+56.(51+52+...+56)+...+585.(51+52+...+56)

   =19530+56.19530+...+585.19530

   =19530.(1+55+...+585)

 Vậy: S chia hết cho 126(Vì 19530 chia hết cho 126)

 b) Vì S chia hết cho 19530 nên S có tận cùng bằng 0(19530=1953.10)

19 tháng 9 2017

a1. A = \(1+4+4^2+4^3+...+4^{58}+4^{59}\)

A = \(\left(1+4\right)+4^2\left(1+4\right)+...+4^{58}\left(1+4\right)\)

A = \(5+4^2.5+...+4^{58}.5\)

A = \(5\left(1+4^2+...+4^{58}\right)⋮5\)

a2. A = \(1+4+4^2+4^3+...+4^{58}+4^{59}\)

A = \(\left(1+4+4^2\right)+\left(4^3+4^4+4^5\right)+...+\left(4^{57}+4^{58}+4^{59}\right)\)

A = \(\left(1+4+4^2\right)+4^3\left(1+4+4^2\right)+...+4^{57}\left(1+4+4^2\right)\)

A = \(\left(1+4+4^2\right)\left(1+4^3+...+4^{57}\right)\)

A = \(21.\left(1+4^3+...+4^{57}\right)⋮21\)

a3. A = \(1+4+4^2+4^3+...+4^{58}+4^{59}\)

A = \(\left(1+4+4^2+4^3\right)+\left(4^4+4^5+4^6+4^7\right)+...+\left(4^{56}+4^{57}+4^{58}+4^{59}\right)\)

A = \(\left(1+4+4^2+4^3\right)+4^4\left(1+4+4^2+4^3\right)+...+4^{56}\left(1+4+4^2+4^3\right)\)

A = \(\left(1+4+4^2+4^3\right)\left(1+4^4+...+4^{56}\right)\)

A = \(85.\left(1+4^4+...+4^{56}\right)⋮85\)

Câu B sao thứ tự số mũ chẳng có quy luật vậy, sao mà làm được :v

19 tháng 9 2017

mình đặt tên cho dễ

A=1 + 4 + 4^2 + ..... + 4 ^59 \(⋮5\)

A=(1+4)+4^2(1+4)+.....+4^58(1+4)

A=5+4^2.5+....4^58.5

A=5.(1+4^2+....+4^58) => đcpm

B=1 + 4 + 4^2 + ..... + 4 ^59 \(⋮21\)

B=(1+4+4^2)+.........+(4^57+4^58+4^59)

B= (1+4+4^2)+4^3(1+4+4^2)+.....+4^47(1+4+4^2

B=(1+4+4^2)+1+4^3+.....+4^57)

B=21.(1+4^3+.....+4^57)\(⋮21\Rightarrowđcpm\)

15 tháng 8 2016

a) S=(5+52+53+54+55+56)+...+(591+592+593+594+595+596)S=(5+52+53+54+55+56)+...+(591+592+593+594+595+596)
=5(1+5+52+53+54+55)+...+591(1+52+53+54+55)=5.3906+...+591.3906=3906(5+...+596)=3.126(5+...+591)=5(1+5+52+53+54+55)+...+591(1+52+53+54+55)=5.3906+...+591.3906=3906(5+...+596)=3.126(5+...+591)
chia hết cho 126126.
b) Do S là tổng các lũy thừa có cơ số là 5.
Cho nên mỗi lũy thừa đều tận cùng là 5.
Mà S có tất cả 96 số như vậy. Nên chữ số tận cùng của S là 0. 

16 tháng 8 2016

a)

Bạn sai đề là chia hết 126

Ta có

\(S=5\left(1+5^3\right)+5^2\left(1+5^3\right)+.....+5^{93}\left(1+5^3\right)\)

\(S=5.126+5^2.126+.....+5^{93}.126⋮126\)

b)

Cách 1

Vì mọi số hạng của S đều chia hết cho 5 nên A chia hết cho 5

Vì S chia hết cho 126 nên A chia hết cho 2

Mà (2;5)=1

=> S chia hết cho 10

=> S có tận cùng là 0

Cách 2

\(S=\left(5+5^2\right)+5^2\left(5+5^2\right)+.....+5^{94}\left(5+5^2\right)\)

\(\Rightarrow S=30+5^2.30+.....+5^{94}.30\) chia hết cho 10

=> A có tận cùng là 0

 

2 tháng 2 2017

phần a bạn nớ làm đug rùi đó

b,5+5^2+5^3+5^4+...+5^2006

=(5^1+5^4)+(5^2+5^5)+...+(5^2003+5^2006)

=5(1+5^3)+...+5^2003(1+5^3)

=5.126+5^2.126+...+5^2003.126

=126(5+...+5^2003) chia hết cho 126

2 tháng 2 2017

a) S = 5 + 52 + 53 + ...... + 52006

5S = 52 + 53 + ...... + 52006 + 52007

5S - S = (52 + 53 + ...... + 52006 + 52007) - ( 5 + 52 + 53 + ...... + 52006)

4S = 52007 - 5

S = \(\frac{5^{2007}-5}{4}\)

19 tháng 12 2018

https://hoc247.net/hoi-dap/toan-6/chung-minh-s-1-2-2-2-2-3-2-4-2-5-2-6-2-7-chia-het-cho-3-faq250754.html

20 tháng 10 2019

S= \(1+2+2^2+...+2^7\)

2S= \(2\cdot\left(2+2^2+...+2^7\right)\)

2S= \(2^1+2^2+...2^8\)

1S= 2S - S = \(\left(2^1+2^2+...2^8\right)-\left(1+2+2^2+...+2^7\right)\)

1S= \(2^1+2^2+...+2^8-1-2-2^2-...-2^7\)

1S= \(2^8-1\)

1S= \(256-1\)

1S= 255

=> 1S chia hết cho 3

Mà 1S= S

=> S chia hết cho 3

Vậy S chia hết cho 3

12 tháng 8 2017

a) \(A=1+3+3^2+.....+3^{10}⋮4\)

\(=\left(1+3\right)+\left(3^2+3^3\right)+.......+\left(3^9+3^{10}\right)\)

\(=\left(1+3\right)+\left(3^2\cdot1+3^2\cdot3\right)+.....+\left(3^9\cdot1+3^9\cdot3\right)\)

\(=\left(1+3\right)+3^2\left(1+3\right)+....+3^9\left(1+3\right)\)

\(=4\cdot1+3^2\cdot4+.......+3^9\cdot4\)

\(=4\cdot\left(1+3^2+.....+3^9\right)⋮4\)

Do đó A \(⋮\) 4

12 tháng 8 2017

b) \(B=16^5+2^{15}⋮33\)

Ta có \(B=16^5+2^{15}\)

\(=\left(2^4\right)^5+2^{15}\)

\(=2^{20}+2^{15}\)

\(=2^{15}\cdot2^5+2^{15}\cdot1\)

\(=2^{15}\cdot\left(2^5+1\right)\)

\(=2^5\cdot\left(32+1\right)\)

\(=2^{15}\cdot33⋮33\)

Do đó \(B⋮33\)