Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\left(ax+by\right)^2=\left(a^2+b^2\right)\left(x^2+y^2\right)\)
\(\Leftrightarrow a^2x^2+2abxy+b^2y^2=a^2x^2+a^2y^2+x^2b^2+b^2y^2\)
\(\Leftrightarrow2abxy=a^2y^2+x^2b^2\)
\(\Leftrightarrow\left(ay-xb\right)^2=0\)
\(\Leftrightarrow ay=xb\)
hay \(\dfrac{a}{x}=\dfrac{b}{y}\)
\(ax+2x+ay+2y+4=x\left(a+2\right)+y\left(a+2\right)+4=\left(a+2\right)\left(x+y\right)+4=\left(a+2\right)\left(a-2\right)+4=a^2-4+4=a^2\)
từ a-2=x+y => y=a-2-x
bn post nhiều nên mình ghi đáp án thôi nhé phần nào sai đề mình cho qua
b)\(\left(x+1\right)\left(xy+1\right)\)
c)\(\left(a+b\right)\left(x+y\right)\)
d)\(\left(x-a\right)\left(x-b\right)\)
e)\(\left(x+y\right)\left(xy-1\right)\)
f)\(\left(a-b\right)\left(x^2+y\right)\)
\(a,7x^2-7xy-4x+4y\)
\(=7x\left(x-y\right)-4\left(x-y\right)\)
\(=\left(7x-4\right)\left(x-y\right)\)
\(b,2x-2y+ax-ay\)
\(=2\left(x-y\right)+a\left(x-y\right)\)
\(=\left(a+2\right)\left(x-y\right)\)
\(c,x^2-x-y^2-y\)
\(=\left(x^2-y^2\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(x-y\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(x-y-1\right)\)
\(d,ax+ay-2x-2y\)
\(=a\left(x+y\right)-2\left(x+y\right)\)
\(=\left(a-2\right)\left(x+y\right)\)
\(e,x\left(a+b\right)-a-b=x\left(a+b\right)-\left(a+b\right)\)
\(=\left(x-1\right)\left(a+b\right)\)
1) x - y - a(x - y) = (x - y) - a(x - y) = (1 - x)(x - y)
2) a - b + x(a - b) = (a - b) + x(a - b) = (1 + x)(a - b)
3) a(x - y) - x + y = a(x - y) - (x - y) = (a - 1)(x - y)
4) x(a - b) - a + b = x(a - b) - (a - b) = (x - 1)(a - b)
5) ax + ay + bx + by = a(x + y) + b(x + y) = (a + b)(x + y)
6) ax + ay - bx - by = a(x + y) - b(x + y) = (a - b)(x + y)
7) - 2x - 2y + ax + ay = -2(x + y) + a(x + y) = (a - 2)(x + y)
8) x2 - xy - 2x + 2y = x(x - y) - 2(x - y) = (x - 2)(x - y)
Sorry nha, giờ mình chỉ rảnh làm 8 câu thôi
`ab(x-3) -a^2(x-3)`
`=(x-3)(a^2-ab)`
__
`ax+ay+bx+by`
`=a(x+y)+b(x+y)`
`=(x+y)(a+b)`
__
`ax+ay -2x-2y`
`=(ax+ay)-(2x+2y)`
`=a(x+y)-2(x+y)`
`=(x+y)(a-2_`
__
`2x-2y +ax-ay`
`=2(x-y)+a(x-y)`
`=(x-y)(2+a)`
__
`10ax -5ay -2x+y`
`= 5a(2x-y) -(2x-y)`
`=(2x-y)(5a-1)`
1: =(x-3)(ab-a^2)
=a(b-a)(x-3)
2: =a(x+y)+b(x+y)
=(x+y)(a+b)
3: =a(x+y)-2(x+y)
=(x+y)(a-2)
4: =2(x-y)+a(x-y)
=(x-y)(a+2)
5: =5a(2x-y)-(2x-y)
=(2x-y)(5a-1)
Bài \(3\)
\(A=\left(x-5\right)\left(2x+3\right)-2x\left(x-3\right)+x+7\)
\(=2x^2+3x-10x-15-\left(2x^2-6x\right)+x+7\)
\(=2x^2+3x-10x-15-2x^2+6x+x+7\)
\(=\left(2x^2-2x^2\right)+\left(3x-10x+6x+x\right)+\left(-15+7\right)\)
\(=-8\)
Vậy biểu thức không phụ thuộc vào biến
\(B=4\left(y-6\right)-y^2\left(2+3y\right)+y\left(5y-4\right)+3y^2\)
Đề như này à?
Bài \(4\)
\(a,4a^2-16b^2=4\left(a^2-4b^2\right)=4\left(a-2b\right)\left(a+2b\right)\)
\(b,4x^2-4x+1=\left(2x\right)^2-2.2x.1+1^2=\left(2x+1\right)^2\)
\(c,\) ?
\(d,\left(x-y\right)^2-\left(2x-y\right)^2\\ =\left[\left(x-y\right)-\left(2x-y\right)\right]\left[\left(x-y\right)+\left(2x-y\right)\right]\\ =\left(x-y-2x+y\right)\left(x-y+2x-y\right)\\ =\left(-x\right)\left(3x-2y\right)\)
\(e,8x^3-y^3=\left(2x\right)^3-y^3\\ =\left(2x-y\right)\left(4x^2+2xy+y^2\right)\)
\(i,3x+6y+\left(x+2y\right)\\ =3\left(x+2y\right)+\left(x+2y\right)\\ =4\left(x+2y\right)\)
\(j,ax-ay-x+y=\left(ãx-ay\right)-\left(x-y\right)\\ =a\left(x-y\right)-\left(x-y\right)=\left(x-y\right)\left(a-1\right)\)
`k,` `y` hay `y^2` ạ? vì nó mới phân tích được nhân tử.
a) TA có :
\(\left(x^2+cx+2\right)\left(ax+b\right)=ax^3+bx^2+acx^2+bcx+2ax+2b\)
\(=ax^3+x^2\left(b+ac\right)+x\left(bc+2a\right)+2b\) = \(=x^3-x^2-2\)
=> a = 1
=>\(2b=-2\Rightarrow b=-1\)
=> b + ac = -1 => -1 + 1.c = -1 => -1 + c = -1 => c = -1 + 1 = 0
VẬy a = 1 ; b = -1 ; c = 0
\(VT=ax+2x+ay+2y+4\)
\(=a\left(x+y\right)+2\left(x+y\right)+4\)
\(=a\left(a-2\right)+2\left(a-2\right)+4\)
\(=a^2-2a+2a-4+4=a^2=VP\)
Ta có: \(VT=ax+2x+ay+2y+4\)
\(=\left(c+y\right)a+2\left(x+y\right)+4\)
\(=\left(a+2\right)\left(x+y\right)+4\)
mà \(a-2=x+y\)
\(\Rightarrow VT=\left(a+2\right)\left(a-2\right)=a^2-4+4=a^2\)
\(\Leftrightarrow VP\) -> ĐPCM.