K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 6 2021

\(A=\frac{2n+7}{n-2}\)

a)\(n\inℤ;n\ne2\)

b)\(\frac{2n+7}{n-2}=\frac{2n-4+11}{n-2}=2+\frac{11}{n-2}\)

Để \(A\)nhận giá trị nguyên \(\Rightarrow11⋮n-2\)

\(\Rightarrow n-2\inƯ\left(11\right)\\ \Rightarrow n-2\in\left\{\pm1;\pm11\right\}\)

n-21-111-11
n3113-9
10 tháng 2 2022

bạn ơi cho mình hỏi ngu 1 tí bạn lấy 4 và 11 ở đâu vậy 

6 tháng 4 2016

a) Gọi d là ước nguyên tố của A .Ta có:

2n+7-2*(2n-2) chia hết cho d

suy ra:2n+7-(2n-2) chia hết cho d

suy ra:2n+7-2n+2 chia hế cho d

suy ra:9 chia hết cho d.Mà d là số nguyên tố nên d =3

-Ta thấy :2n+7 chia hết cho 3 ,khi đó n-2 chia hết cho 3 

khi và chỉ khi:2n+-3 chia hết cho 3

khi và chỉ khi:2n+(7-3) chia hết cho 3

khi và chỉ khi:2n +4 chia hết cho 3

khi và chỉ khi: 2*(n+2) chia hết cho 3

khi và chỉ khi : n+2 chia hết cho 3

khi và chỉ khi : n=3k -2 (với k thuộc N)

Vậy với n khác 3k-2 thì A (=2n+7/n-2) là phân số

6 tháng 4 2016

b) với n thuộc Z để A=2n+7/n-2 thuộc Z ta có:

2n+7 chia hết cho n-2

suy ra:  2n+7-(n-2) chia hết cho n-2

suy ra:  2n+7-n+2 chia hết cho n-2

suy ra:   (2n-n) + (7+2) chia hết cho n-2

suy ra:    n +9 chia hết cho n-2

suy ra:    (n-2) +11 chia hết cho n-2

suy ra;     11 chia hết cho n-2 [do (n-2) chia hết cho (n-2)]

suy ra:     n-2 thuộc ước của 11 ={ -1;1;-11;11}

Ta có bảng sau:

n-2-
n-2-1                          1                          -11                         11
n1                           3                           -9                         13
  

GTLN = 16 

n = -2 

nha bạn chúc bạn học tốt nha

18 tháng 8 2021

gtln =16 

 n=-2

  chúc bạn hok tốt

18 tháng 8 2021

\(A=\frac{6n-4}{2n+3}=\frac{6n+9-13}{2n+3}=3-\frac{13}{2n+3}\)

a. Để A đạt giá trị nguyên thì \(\frac{13}{2n-3}\)đạt giá trị nguyên

=> 2n - 3\(\in\){ - 13 ; - 1 ; 1 ; 13 }

=> n\(\in\){ - 5 ; 1 ; 2 ; 8 }

b. thêm điều kiện n\(\in\)Z

Để A đạt GTLN thì \(\frac{13}{2n-3}\)đạt GTNN <=> 2n - 3 đạt GTLN ( không thể tìm được n ) 

18 tháng 8 2021

Ta có :

A=6n−4/2n+3=6n+9−13/2n+3=3−13/2n+3

a. Để A nguyên thì 13/2n+3∈Z

⇒2n+3∈{−13;−1;1;13}

⇒2n∈{−16;−4;−2;10}

⇒n∈{−8;−2;−1;5}

b. Bổ sung điều kiện : A thuộc Z 

Để  A max thì 13/2n+3 min

⇔2n+3 max ∈ Z

Mà A∈Z⇔2n+3=−13 hoặc 2n+3=−1

⇒A max=3−13/−1=16⇔n=−2(tm:n∈Z)

Vậy A max = 16 <=> n = -2

max là giá trị lớn nhất 

min là giá trị nhỏ nhất

HT

NM
18 tháng 8 2021

ta có 

\(A=\frac{6n-4}{2n+3}=\frac{6n+9-13}{2n+3}=3-\frac{13}{2n+3}\)

Để A nguyên thì 2n+3 phải là ước của 13 nên

\(\orbr{\begin{cases}2n+3=\pm1\\2n+3=\pm13\end{cases}}\Rightarrow n\in\left\{-8,-2,-1,5\right\}\)

Để A lớn nhất thì \(\frac{13}{2n+3}\text{ nhỏ nhất}\Rightarrow2n+3=-1\Leftrightarrow n=-2\)

NM
19 tháng 8 2021

ta có 

\(A=\frac{6n-4}{2n+3}=\frac{6n+9-13}{2n+3}=3-\frac{13}{2n+3}\)

Để A nguyên thì 2n+3 phải là ước của 13 nên

\(\orbr{\begin{cases}2n+3=\pm1\\2n+3=\pm13\end{cases}}\Rightarrow n\in\left\{-8,-2,-1,5\right\}\)

Để A lớn nhất thì \(\frac{13}{2n+3}\text{ nhỏ nhất}\Rightarrow2n+3=-1\Leftrightarrow n=-2\)

Đề bài yêu cầu gì?

5 tháng 4 2022

đề bài

a) Gọi d là ước nguyên tố của 2n+9/n+1. Ta có:

                                           2n+9-2(n+1) chia hết cho d => d=7

Ta thấy 2n+9 chia hết cho 7 khi đó n+1 chia hết cho 7.

<=> 2n+9-7 chia hết cho 7.

<=>2(n+1) chia hết cho 7 <=> n+1 chia hết cho 7 <=> n=7k-1(k thuộc N)

Vậy nếu n khác 7k-1 thì A là phân số.

15 tháng 11 2023

Vũ™©®×÷|

10 tháng 9 2020

Trả lời nhanh giúp mình với!

10 tháng 9 2020

B1:

A=1/3+1/3^2+1/3^3+...+1/3^100

3A = 1 + 1/3 + 1/3^2 + ... + 1/3^99

3A - A = 1 - 1/3^100 = 2A

A = (1 - 1/3^100)/2

B2:

a) 

để A nguyên <=> n + 3 ⋮ n - 5

=> n - 5 + 8 ⋮ n - 5

=> 8 ⋮ n - 5

=> ...

b) 

để B nguyên <=> 1 - 2n ⋮ n + 3

=> 4 - 2n - 3 ⋮ n + 3

=> 4 - 2(n + 3) ⋮ n + 3

=> 4 ⋮ n + 3

=> ...