Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=2+22+23+24+25+26+27+28+......+297+298+299+2100
A=(2+22+23+24)+(25+26+27+28)+......+(297+298+299+2100)
A=2.(1+2+22+23)+25.(1+2+22+23)+.....+297.(1+2+22+23)
A=2.15+25.15+.....+297.15
A=15.(2+25+...+297)\(⋮\)15
A=2+22+23+24+25+......+296+297+298+299+2100
A=2.(1+2+22+23+24)+....+296.(1+2+22+23+24)
A=2.31+...+296.31
A=31.(2+..+296)\(⋮\)31
A chia hết cho 31 và 15 =>A cũng chia hết (31,15)hay A chia hết cho 465(ĐPCM)
Bài 1)
a) Ta có: \(A=m^2+m+1=m(m+1)+1\)
Vì $m,m+1$ là hai số tự nhiên liên tiếp nên tích của chúng chia hết cho $2$ hay $m(m+1)$ chẵn
Do đó $m(m+1)+1$ lẻ nên $A$ không chia hết cho $2$
b)
Nếu \(m=5k(k\in\mathbb{N})\Rightarrow A=25k^2+5k+1=5(5k^2+k)+1\) chia 5 dư 1
Nếu \(m=5k+1\Rightarrow A=(5k+1)^2+(5k+1)+1=25k^2+15k+3\) chia 5 dư 3
Nếu \(m=5k+2\Rightarrow A=(5k+2)^2+(5k+2)+1=25k^2+25k+7\) chia 5 dư 2
Nếu \(m=5k+3\Rightarrow A=(5k+3)^2+(5k+3)+1=25k^2+35k+13\) chia 5 dư 3
Nếu \(m=5k+4\) thì \(A=(5k+4)^2+(5k+4)+1=25k^2+45k+21\) chia 5 dư 1
Như vậy tóm tại $A$ không chia hết cho 5
Bài 2:
a) \(P=2+2^2+2^3+...+2^{10}\)
\(=(2+2^2)+(2^3+2^4)+(2^5+2^6)+...+(2^9+2^{10})\)
\(=2(1+2)+2^3(1+2)+2^5(1+2)+..+2^9(1+2)\)
\(=3(2+2^3+2^5+..+2^9)\vdots 3\)
Ta có đpcm
b) \(P=(2+2^2+2^3+2^4+2^5)+(2^6+2^7+2^8+2^9+2^{10})\)
\(=2(1+2+2^2+2^3+2^4)+2^6(1+2+2^2+2^3+2^4)\)
\(=(1+2+2^2+2^3+2^4)(2+2^6)=31(2+2^6)\vdots 31\)
Ta có dpcm.
Bài 2 :
A = 12 + 14 + 16 + x \(⋮\) 2
mà 12 \(⋮\) 2
14 \(⋮\) 2
16 \(⋮\) 2
\(\Rightarrow\) ( 12 + 14 + 16 ) \(⋮\) 2
\(\Rightarrow\) x \(⋮\) 2
x = 2k ( k \(\in\) N )
A = 12 + 14 + 16 + x \(⋮̸\) 2
mà 12 \(⋮\) 2
14 \(⋮\) 2
16 \(⋮\) 2
\(\Rightarrow\) x \(⋮̸\) 2
x = 2k + r ( k \(\in\) N , r \(\in\) N* )
Bài 3 : Cách làm tương tự như bài 2
a)A=2(1+2+2^2+...+2^19)
=>A chia hết cho 2
b)A=(2+2^2)+(2^3+2^4)+...+(2^19+2^20)
A=2(1+2)+2^3(1+2)+...+2^19(1+2)
A=2.3+2^3.3+...+2^19.3
A=3(2+2^3+...+2^19)
=>A chia hết cho 3
c)A=(2+2^3)+(2^2+2^4)+...+(2^18+2^20)
A=2(1+2^2)+2^2(1+2^2)+...+2^18(1+2^2)
A=2.5+2^2.5+...+2^18.5
A=5(2+2^2+...+2^18)
=>A chia hết cho 5