K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 11 2015

dư 4

tick cho mình rồi mình trình bày cách làm cho

19 tháng 1 2016

A=2^0+(2^1+2^2+2^3)+............+(2^2010+2^2011+2^2012)(cho 2^0 ra ngoài vì có tất cả 2013 số ko chia hết được cho 3)

=1+2.(1+2^1+2^2)+.................+2^2009.(1+2^1+2^2)

=1+(2.7+2^3.7+...................+2^2009.7)

=1+[7.(2+2^3+2^6+..........+2^2009)]vậy biểu thức trong ngoặc chia hết cko

7.A chia 7 dư 1

 

28 tháng 10 2016

Ta có:

\(A=1+2^2+2^3+...+2^{2011}+2^{2012}+2^{2013}\)

\(A=1+\left(2^2+2^3+2^4\right)+\left(2^5+2^6+2^7\right)+...+\left(2^{2011}+2^{2012}+2^{2013}\right)\)

\(A=1+2^2\cdot\left(1+2+2^2\right)+2^5\cdot\left(1+2+2^2\right)+...+2^{2011}\cdot\left(1+2+2^2\right)\)

\(A=1+2^2\cdot7+2^5\cdot7+...+2^{2011}\cdot7\)

\(A=1+7\cdot\left(2^2+2^5+...+2^{2011}\right)\)

\(7⋮7\)

\(\Rightarrow7\cdot\left(2^2+2^5+...+2^{2011}\right)⋮7\)

\(\Rightarrow1+7\cdot\left(2^2+2^5+...+2^{2011}\right)\) chia 7 dư 1

hay \(A\) chia 7 dư 1

Vậy A chia 7 dư 1.

29 tháng 10 2016

thanks

11 tháng 12 2018

Gọi tổng trên là T (tượng trưng cho tth :v)

Ta có: \(T=\left(7^0+7^1\right)+\left(7^2+7^3\right)+...+\left(7^{2011}+7^{2012}\right)\)

\(=1\left(7^0+7^1\right)+7^2\left(7^0+7^1\right)+...+7^{2011}\left(7^0+7^1\right)\)

\(=8\left(1+7^2+...+7^{2011}\right)⋮8^{\left(đpcm\right)}\) 

11 tháng 12 2018

72010 thôi nhé chứ ko phải 72012 đâu sorry

18 tháng 12 2017

A = 30 + 31 + 3+ 33 + ... + 32011 + 32012

A = 1+( 31 + 3+ 33 + ... + 32011 + 32012   

A-1 =  31 + 3+ 33 + ... + 32011 + 32012

            A-1 có 2012 số hạng ,nhóm 4 số hạng liên tiếp với nhau , ta được 503 nhóm :

A-1=3(1+3+3^2+3^3)+3^5(1+3+3^2+3^3)+....+3^2009(1+3+3^2+3^3)=40.(3+3^5+...+3^2009)

=>       (A-1) chia hết cho 40

20 tháng 12 2017

Hoàng...

16 tháng 12 2015

A=22011+22012+22013+22014+22015+22016

A=22011.1+22011.2+22011.22+22011.23+22011.24+22011.25

A=22011.(1+2+22+23+24+25)

A=22011.(1+2+4+8+16+32)

A=22011.63

A=22011.3.21    chia hết cho 21

26 tháng 12 2016

20115524+2105+26589+2356/8968-5689

4 tháng 3 2018

Ta có : A =  2011 +  2011+ 2011+ .... + 20112011

=> A = 2011(1+2011+ 2011+ .... + 20112010)

=> A lẻ 

=> A không chia hết cho 2012

5 tháng 12 2014

cho mình xin lỗi. mình sửa lại tí:

phải là = (4+42)+42(4+42)+....+42010(4+42)

          =20 + 42.20+....+42010.20

          =20(1+42+.....+42010) chia hết cho  5

         =) 4+42+....+42011+42012 chia hết cho 5

Thế nhé !

             

4 tháng 2 2016

+)A=2^1+2^2+2^3+2^4+...+2^2010

=>A=(2^1+2^2)+(2^3+2^4)+(2^5+2^6)+...+(2^2009+2^2010)

=>A=6+2^2.(2+2^2)+2^4.(2+2^2)+...+2^2008(2+2^2)

=>A=6+2^2.6+2^4.6+...+2^2008.6

=>A=6.(1+2^2+2^4+...+2^2008)

=>A=3.2.(1+2^2+2^4+...+2^2008)

=>A chia hết cho 3

A=2+2^2+2^3+2^4+...+2^2010

A=(2+2^2+2^3)+(2^4+2^5+2^6)+(2^7+2^8+2^9)+...+(2^2008+2^2009+2^2010)

A=2.(1+1+2^2)+2^4(1+2+2^2)+2^7.(1+2+2^4)+...+2^2008.(1+2+2^2)

A=2.7+2^4.7+2^7.7+...+2^2008.7

A=7.(2+2^4+2^7+...+2^2008)

=> A chia hết cho 7

các phần khác làm tương tự

4 tháng 2 2016

A = 21 + 22 + 23 + 2+ .... + 22009 + 22010

=> A = ( 2+ 22 ) + ( 23 + 2) + .... + ( 22009 + 22010 )

=> A = 21.( 1 + 2 ) + 23.( 1 + 2 ) + .... + 22009.( 1 + 2 )

=> A = 21.3 + 23.3 + .... + 22009.3

=> A = 3.( 21 + 23 + .... + 22009 )

Vì 3 ⋮ 3 => A ⋮ 3 ( đpcm )

A = 21 + 22 + 2+ 24 + 2+ 26 + .... + 22007 + 22008 + 22009

=> A = ( 21 + 22 + 23 ) + ( 24 + 2+ 26 ) + .... + ( 22007 + 22008 + 22009 )

=> A = 21.( 1 + 2 + 2.2 ) + 24.( 1 + 2 + 2.2 ) + .... + 22007.( 1 + 2 + 2.2 )

=> A = 21.7 + 24.7 + .... + 22007.7

=> A = 7.( 21 + 24 + .... + 22007 )

Vì 7 ⋮ 7 => A ⋮ 7 ( đpcm )

Các ý sau tương tự .