Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sơ lược cách giải :
Xét tổng \(A=a_1^3+....+a_5^3-\left(a_1+....+a_5\right)=\left(a_1^3-a_1\right)+...+\left(a_5^3-a_5\right)\)
Chứng minh được \(\left(a_1^3-a_1\right);..;\left(a_5^3-a_5\right)⋮6\Rightarrow\left(a_1^3-a_1\right)+...+\left(a_5^3-a_5\right)⋮6\)
Hay \(A⋮6\) mà \(\left(a_1+....+a_5\right)=600⋮6\) \(\Rightarrow\left(a^3_1+....+a^3_5\right)⋮6\)
Do \(\left(a_1-a_2\right)+\left(a_2-a_3\right)+...+\left(a_{10}-a_1\right)=0\) là 1 số chẵn
\(\Rightarrow\left|a_1-a_2\right|+\left|a_2-a_3\right|+...+\left|a_{10}-a_1\right|\) là một số chẵn
Mà \(2015\) lẻ \(\Rightarrow\) không tồn tại bộ số nguyên nào thỏa mãn phương trình
Đặt A = a1+a2+a3+...+an
B = a15 + a25 + a35+ ... + an5
Xét X = B - A = (a15 - a1) + (a25 - a2) + ... + (an5 - an)
ai5 - ai = ai(ai4 - 1) = ai (ai-1)(ai+1)(ai2+1) (i = 1;2;3;...;n)
ai (ai-1)(ai+1) chia hết cho 2;3 mà (2;3)=1 nên ai (ai-1)(ai+1) chia hết cho 6. Vậy X chia hết cho 6.
Nếu ai=5k => X chia hết 5.
Nếu ai = 5k\(\pm\)1 => (ai-1)(ai+1) chia hết 5 => X chia hết 5.
Nếu ai = 5k\(\pm\)2 => ai2 + 1 = (5k\(\pm\)2)2 + 1 = 25k2 \(\pm\) 20k + 5 => X chia hết 5.
Mà (6;5) =1 => X = B - A chia hết 30 mà A chia hết 30 => B chia hết 30 hay a15 + a25 + a35+ ... + an5 chia hết 30.
Bạn xét hiệu là ra nhé :
Đặt : \(Q=a_1^5+.....+a_{2019}^5\)
Xét hiệu : \(Q-P\)
Do vai trò như nhau nên ta xét \(a^5-a=a\left(a-1\right)\left(a+1\right)\left(a^2+1\right)\)
\(=\left(a-1\right)a\left(a+1\right)\left(a-2\right)\left(a+2\right)-5a⋮30\)
giúp mk vs !!!