K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
29 tháng 3 2021

Do \(\left(a_1-a_2\right)+\left(a_2-a_3\right)+...+\left(a_{10}-a_1\right)=0\) là 1 số chẵn

\(\Rightarrow\left|a_1-a_2\right|+\left|a_2-a_3\right|+...+\left|a_{10}-a_1\right|\) là một số chẵn

Mà \(2015\) lẻ \(\Rightarrow\) không tồn tại bộ số nguyên nào thỏa mãn phương trình

29 tháng 3 2021

Em cảm ơn thầy ạ.

12 tháng 8 2016

Giả sử trong 2015 số đã cho không có hai số nào bằng nhau, không mất tính tổng quát ta giả sử 

\(a_1< a_2< ...< a_{2015}\)

Vì \(a_1,a_2,...,a_{2015}\) đều là số nguyên dương nên ta suy ra

\(a_1\ge1;a_2\ge2;...;a_{2015}\ge2015\)

Suy ra 

\(\frac{1}{a_1}+\frac{1}{a_2}+...+\frac{1}{a_{2015}}< 1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2015}\)

\(=1+\left(\frac{1}{2}+\frac{1}{3}\right)+\left(\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}\right)+...+\left(\frac{1}{1024}+\frac{1}{1025}+...+\frac{1}{2015}\right)\)

\(< 1+\frac{1}{2}.2+\frac{1}{2^2}.2^2+...+\frac{1}{2^{10}}\cdot2^{10}=11< 1008\)

Mâu thuẫn với giả thiết

Do đó điều giả sử là sai

Vậy trong 2015 số đã cho phải có ít nhất 2 số bằng nhau

12 tháng 8 2016

quen quá lolang

20 tháng 9 2019

Cho e sửa chỗ \(\Sigma\frac{a_1}{1+a_2^2}\) là \(\frac{a_1}{1+a_2^2}+\frac{a_2}{1+a_3^2}+......+\frac{a_n}{1+a_1^2}\) nha mn 

22 tháng 9 2019

\(\Leftrightarrow a_1a_2+...+a_ka_1\le a_1+a_2+...+a_k.lay:a_1=a_2=...=a_k=5\Rightarrow sai\)

21 tháng 3 2021

Ta có: Xét với $a^3-a;a∈Z$

$=a(a^2-1)$

$=(a-1)a(a+1)$

Ta thấy với $a∈Z$ thì $(a-1);a;(a+1)$ là 3 số nguyên liên tiếp

$⇒$Có 1 số chia hết cho 3; ít nhất  1 số chia hết cho 2

$⇒\begin{cases}(a-1)a(a+1) \vdots 3\\ (a-1)a(a+1) \vdots 2\end{cases}$

$⇒(a-1)a(a+1) \vdots 6$ (do $(3;2)=1$)

Hay $a^3-a \vdots 6$

Vậy ta có: $a_1^3-a_1 \vdots 6;a_2^3-a_2 \vdots 6;a_100^3-a^100 \vdots 6$

$⇒a_1^3+a_2^3+a_3^3+...+a_100^3-(a_1+a_2+a_3+...+a_100) \vdots 6$

$⇒a_1^3+a_2^3+a_3^3+...+a_100^3 \equiv a_1+a_2+a_3+...+a_100 (mod 6)$

Mà $a_1+a_2+a_3+...+a_100=2021^{2022}$

$2021 \equiv 5 (mod 6)$

$⇒2021^{2022} \equiv 5^{2022} (mod  6)$

Mà $5 \equiv -1 (mod 6)$

$⇒5^{2022} \equiv 1 (mod 6)$

$⇒2021^{2022} \equiv 1 (mod 6)$

tức $a_1+a_2+a_3+...+a_100 \equiv 1 (mod 6)$

Mà $a_1^3+a_2^3+a_3^3+...+a_100^3 \equiv a_1+a_2+a_3+...+a_100 (mod 6)$

$⇒a_1^3+a_2^3+a_3^3+...+a_100^3 \equiv 1 (mod 6)$

$⇒S \equiv 1 (mod 6)$

Hay $S-1 \vdots 6$ (đpcm)

21 tháng 3 2021

Dạ cho hỏi là: mod6 với ba que là gì vậy ạ