Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
\(A=4+4^2+4^3+4^4+...+4^{59}+4^{60}\)
\(\Leftrightarrow A=\left(4+4^2\right)+\left(4^3+4^4\right)+...+\left(4^{59}+4^{60}\right)\)
\(\Leftrightarrow A=4\left(1+4\right)+4^3\left(1+4\right)+...+4^{59}\left(1+4\right)\)
\(\Leftrightarrow A=4.5+4^3.5+...+4^{59}.5\)
\(\Leftrightarrow A=5\left(4+4^3+...+4^{59}\right)⋮5\)
\(\Leftrightarrow A=4+4^2+4^3+4^4+...+4^{59}+4^{60}⋮5\)
Vậy \(A⋮5\).
Chúc bạn học tốt!
+)A=2^1+2^2+2^3+2^4+...+2^2010
=>A=(2^1+2^2)+(2^3+2^4)+(2^5+2^6)+...+(2^2009+2^2010)
=>A=6+2^2.(2+2^2)+2^4.(2+2^2)+...+2^2008(2+2^2)
=>A=6+2^2.6+2^4.6+...+2^2008.6
=>A=6.(1+2^2+2^4+...+2^2008)
=>A=3.2.(1+2^2+2^4+...+2^2008)
=>A chia hết cho 3
A=2+2^2+2^3+2^4+...+2^2010
A=(2+2^2+2^3)+(2^4+2^5+2^6)+(2^7+2^8+2^9)+...+(2^2008+2^2009+2^2010)
A=2.(1+1+2^2)+2^4(1+2+2^2)+2^7.(1+2+2^4)+...+2^2008.(1+2+2^2)
A=2.7+2^4.7+2^7.7+...+2^2008.7
A=7.(2+2^4+2^7+...+2^2008)
=> A chia hết cho 7
các phần khác làm tương tự
A = 21 + 22 + 23 + 24 + .... + 22009 + 22010
=> A = ( 21 + 22 ) + ( 23 + 24 ) + .... + ( 22009 + 22010 )
=> A = 21.( 1 + 2 ) + 23.( 1 + 2 ) + .... + 22009.( 1 + 2 )
=> A = 21.3 + 23.3 + .... + 22009.3
=> A = 3.( 21 + 23 + .... + 22009 )
Vì 3 ⋮ 3 => A ⋮ 3 ( đpcm )
A = 21 + 22 + 23 + 24 + 25 + 26 + .... + 22007 + 22008 + 22009
=> A = ( 21 + 22 + 23 ) + ( 24 + 25 + 26 ) + .... + ( 22007 + 22008 + 22009 )
=> A = 21.( 1 + 2 + 2.2 ) + 24.( 1 + 2 + 2.2 ) + .... + 22007.( 1 + 2 + 2.2 )
=> A = 21.7 + 24.7 + .... + 22007.7
=> A = 7.( 21 + 24 + .... + 22007 )
Vì 7 ⋮ 7 => A ⋮ 7 ( đpcm )
Các ý sau tương tự .
a) Gọi A = 4 + 4 ^1 + 4 ^2 + ... + 4^60
Vì 4 chia hết cho 2; 4^2 chia hết cho 2 và nói chung là tất cả các số hạng đều là số chẵn
=> A chia hết cho 2
\(A=4\cdot\left(4+1\right)+4^3\cdot\left(1+4\right)+...+4^{59}\cdot\left(1+4\right)\)
\(A=4\cdot5+4^3\cdot5+...+5^{59}\cdot5\)
\(A=5\cdot\left(4+4^3+...+4^{59}\right)⋮5\left(đpcm\right)\)
b)
\(B=5\cdot\left(1+5\right)+5^3\cdot\left(1+5\right)+...+5^9\cdot\left(1+5\right)\)
\(B=5\cdot6+5^3\cdot6+...+5^9\cdot6\)
\(B=6\cdot\left(5+5^3+...+5^9\right)⋮6\left(đpcm\right)\)
A=1+4+42+...+479
A=(1+4)+(42+43)+...+(478+479)
A=1.(1+4)+42.(1+4)+...+478.(1+4)
A=1.5+42.5+...+478.5
A=5.(1+42+...+478)
=>A chia hết cho 5
A=1+4+42+43+44+45+...+458+459
b, A chia hết cho21