K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Dề phải là lớn hơn \(A>\frac{1}{2}\)chớ nhể 

\(A=\left(2^2+3^2+4^2+...+10^2\right)+\left(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{9^2}\right)\)

Sử dụng tổng xích ma ta có :

\(A=384+1,539767731>\frac{1}{2}\)

7 tháng 9 2019

Đề là thế này á \(A=\frac{1}{1^2}+2^2+\frac{1}{2^2}+3^2+\frac{1}{3^2}+...+9^2+\frac{1}{9^2}+10^2\).Chứng minh \(A>\frac{1}{2}\)

Đề này chắc có nhầm gì đó chứ nó quá hiển nhiên mà

\(A=1+\left(2^2+\frac{1}{2^2}+3^2+\frac{1}{3^2}+...+10^2\right)\)

Có ngay cái ngoặc dương nên \(A>1+0=1>\frac{1}{2}\)
 

1 tháng 11 2016

\(A=\frac{1}{2^2}+\frac{1}{2^4}+\frac{1}{2^6}+\frac{1}{2^8}+...+\frac{1}{2^{100}}\)

\(2^2.A=1+\frac{1}{2^2}+\frac{1}{2^4}+\frac{1}{2^6}+...+\frac{1}{2^{98}}\)

\(2^2.A-A=\left(1+\frac{1}{2^2}+\frac{1}{2^4}+\frac{1}{2^6}+...+\frac{1}{2^{98}}\right)-\left(\frac{1}{2^2}+\frac{1}{2^4}+\frac{1}{2^6}+\frac{1}{2^8}+...+\frac{1}{2^{100}}\right)\)

\(4.A-A=1-\frac{1}{2^{100}}< 1\)

\(3A< 1\)

\(\Rightarrow A< \frac{1}{3}\left(đpcm\right)\)

17 tháng 12 2019

không biết khó quá mà bạn biết bài này không giúp mình với mình cần gấp nha nick mình là Quách Ngọc Minh Xuân

17 tháng 12 2019

ko có số 2 ở cuối đâu mk nhầm sorry mn nha

31 tháng 5 2016

Đặt A = 1/3 + 1/3^2 + 1/3^3 + ... + 1/3^2011 + 1/3^2012

3A = 1 + 1/3 + 1/3^2 + ... + 1/3^2010 + 1/3^2011

3A - A = ( 1 + 1/3 + 1/3^2 + ... + 1/3^2010 + 1/3^2011) - ( 1/3 + 1/3^2 + 1/3^3 + ... + 1/3^2011 + 1/3^2012)

31 tháng 5 2016

A= 1/3+1/3^2+1/3^3+...+1/3^2011+1/3^2012 

1/3.A= 1/3^2+1/3^3+1/3^4+...+1/3^2012+1/3^2013

=> 1/3.A-A=-2/3.A = (1/3^2+1/3^3+1/3^4+...+1/3^2012+1/3^2013) - ( 1/3+1/3^2+1/3^3+...+1/3^2011+1/3^2012 )

=> -2/3.A= 1/3^2013 +1/3

=> A= (1/3^2013+1/3) : -2/3

Ta được A < 1/2 

:D 

14 tháng 12 2017

3B = 1+1/3+....+1/3^2012

2B=3B-B=(1+1/3+....+1/3^2012)-(1/3+1/3^2+....+1/3^2013) = 1-1/3^2013 < 1

=> B < 1:2 = 1/2

k mk nha