Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : A=1/11+1/12+1/13+1/14+...+1/20
=>A>1/20+1/20+1/20+...+1/20(10 số hạng 1/20)
=>A>1/20.10=1/2
Vậy A>1/2
\(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}\)
\(< \frac{1}{10}+\frac{1}{10}+\frac{1}{10}+\frac{1}{10}+\frac{1}{10}\)
\(=\frac{5}{10}=\frac{1}{2}\)
Ta có:\(\frac{1}{11}>\frac{1}{20};\frac{1}{12}>\frac{1}{20};\frac{1}{13}>\frac{1}{20};....;\frac{1}{19}>\frac{1}{20}\)
\(\Rightarrow\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{20}>\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}\)(Có 10 phân số \(\frac{1}{20}\))
\(\Rightarrow\frac{1}{11}+\frac{1}{12}+...+\frac{1}{20}>\frac{10}{20}\)\(\Leftrightarrow S>\frac{10}{20}\)
Mà \(\frac{10}{20}=\frac{1}{2}\)nên
\(\Rightarrow S>\frac{1}{2}\)
A=1/10+1/11+...+1/18+1/19
Số phân số A có là:(19-10):1+1=109(p/s)
Ta có: 1/10>1/20,1/11>1/20,....,1/19>1/20
Suy ra: 1/10+1/11+...+1/18+1/19 > 1/20+1/20+....+1/20
A >10/20
Suy ra A > 1/2
Vậy A > 1/2
a)Ta có:
A= 1/1.2+1/2.3+1/3.4+.....+1/99.100
=1-1/2+1/2-1/3+...+1/99-1/100
=1-1/100
=99/100
b)Ta có:
B= 1/11+1/12+1/13+1/14+1/15+...+1/50
=(1/11+1/50)+(1/12+1/49)+...+(1/30+1/31)
=61/11.50+61/12.49+...+61/30.31
=61.(1/11.50+1/12.49+...+1/30.31)
Mình xin lỗi chỉ làm được đến đây vì dạng tính B mình không tốt lắm ◕◡◕
\(B=\left(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{30}\right)+\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{50}\right)>\left(\frac{1}{30}+\frac{1}{30}+...+\frac{1}{30}\right)+\left(\frac{1}{50}+\frac{1}{50}+...+\frac{1}{50}\right)\)=> \(B>\frac{20}{30}+\frac{20}{50}=\frac{2}{3}+\frac{2}{5}=\frac{16}{15}>1\)
mà \(A=\frac{99}{100}
\(S=\frac{1}{11}+\frac{1}{12}+...+\frac{1}{20}\)
\(>\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}\)(10 số hạng)
\(=10.\frac{1}{20}=\frac{1}{2}\).
Vậy \(S>\frac{1}{2}\).
ta thấy: 1/11;1/12;1/13;...;1/19;1/20 đều >1/20
=>1/11+1/12+...1/19+1/20>1/20+1/20...+1/20
1/11+1/12+...1/19+1/20>10/20
1/11+1/12+...1/19+1/20>1/2 vậy S>1/2
\(S=\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}+\frac{1}{17}+\frac{1}{18}+\frac{1}{19}+\frac{1}{20}>\frac{1}{20}+...+\frac{1}{20}\)(10 số \(\frac{1}{20}\))
=\(\frac{1}{20}.10=\frac{1}{2}\)
vậy S>1/2
có \(\frac{1}{20}\) bé nhất suy ra
"có 10 số hạng "\(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+......+\frac{1}{20}>\frac{1}{20}.10\)
\(VT>\frac{10}{20}=\frac{1}{2}\)
Ta có: 1/2=10/20=1.10/20=1/20+1/20+1/20+.....+1/20(10 số 1/20)
Vì các p/s từ 1/11->1/19 đều lớn hơn 1/20 nên Ta có: 1/11+1/12+1/13+....+1/20>1/20+1/20+1/20+.....+1/20(10 số 1/20) => A >1/20+1/20+1/20+.....+1/20(10 số 1/20)