Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
\(\overrightarrow{BC}=\left(1;3\right)\Rightarrow\) đường thẳng BC nhận (3;-1) là 1 vtpt
Phương trình tổng quát BC qua B(-1;0) có dạng:
\(3\left(x+1\right)-1\left(y-0\right)=0\Leftrightarrow3x-y+3=0\)
Pt AB và AC em tự viết tương tự
b.
Do M là trung điểm BC, theo công thức trung điểm \(\Rightarrow M\left(-\dfrac{1}{2};\dfrac{3}{2}\right)\)
\(\Rightarrow\overrightarrow{AM}=\left(-\dfrac{5}{2};\dfrac{1}{2}\right)\Rightarrow\) đường thẳng AM nhận (1;5) là 1 vtpt
Phương trình AM qua A(2;1) có dạng:
\(1\left(x-2\right)+5\left(y-1\right)=0\Leftrightarrow x+5y-7=0\)
c.
Do AH vuông góc BC nên AH nhận (1;3) là 1 vtpt
Phương trình AH qua A có dạng:
\(1\left(x-2\right)+3\left(y-1\right)=0\Leftrightarrow x+3y-5=0\)
d.
Gọi I là trung điểm AB \(\Rightarrow I\left(\dfrac{1}{2};\dfrac{1}{2}\right)\)
\(\overrightarrow{BA}=\left(3;1\right)\)
Do trung trực AB vuông góc và đi qua trung điểm AB nên đi qua I và nhận (3;1) là 1 vtpt
Phương trình:
\(3\left(x-\dfrac{1}{2}\right)+1\left(y-\dfrac{1}{2}\right)=0\Leftrightarrow3x+y-2=0\)
14.
\(\overrightarrow{AB}=\left(-3;10\right)\) nên pt tham số của AB là: \(\left\{{}\begin{matrix}x=3-3t\\y=-4+10t\end{matrix}\right.\)
15.
Do d song song delta nên d nhận \(\left(2;-1\right)\) là 1 vtcp
Phương trình tham số d: \(\left\{{}\begin{matrix}x=2t\\y=-4-t\end{matrix}\right.\)
18.
d có vtcp là (2;3) nên d nhận (3;-2) là 1 vtpt
Phương trình d:
\(3\left(x+1\right)-2\left(y-0\right)=0\Leftrightarrow3x-2y+3=0\)
19.
\(\overrightarrow{AB}=\left(3;-4\right)\Rightarrow\) đường thẳng AB nhận (4;3) là 1 vtpt
Phương trình d:
\(4\left(x+2\right)+3\left(y-4\right)=0\Leftrightarrow4x+3y-4=0\)
\(\overrightarrow{AB}\) = ( 3; -4) , \(\overrightarrow{u}\) = ( 3;-4) ; \(\overrightarrow{n}\) = ( 4;3)
PTTS: \(\left\{{}\begin{matrix}x=-2+3t\\y=4-4t\end{matrix}\right.\)
PTTQ: 4(x+2) +3( y-4)= 0
\(\Leftrightarrow\) 4x + 3y -4 = 0
PTCT: \(\frac{x+2}{3}=\frac{y-4}{-4}\)
1.
Phương trình:
\(2\left(x-3\right)+1\left(y+4\right)=0\Leftrightarrow2x+y-2=0\)
2.
Phương trình tham số: \(\left\{{}\begin{matrix}x=3-3t\\y=-4+3t\end{matrix}\right.\)
3.
\(\overrightarrow{NM}=\left(4;2\right)=2\left(2;1\right)\)
\(\Rightarrow\) Đường thẳng MN nhận (2;1) là 1 vtcp và (1;-2) là 1 vtpt
Phương trình tổng quát (chọn điểm M để viết):
\(1\left(x-3\right)-2\left(y-4\right)=0\Leftrightarrow x-2y+5=0\)
Phương trình tham số: \(\left\{{}\begin{matrix}x=3+2t\\y=4+t\end{matrix}\right.\)
Bài 1:
\(\overrightarrow{BC}=\left(-1;4\right)\)
Gọi đường cao xuất phát từ A là AH
Do \(AH\perp BC\Rightarrow\) đường thẳng AH nhận \(\overrightarrow{n_{AH}}=\left(-1;4\right)\) là 1 vtpt
Phương trình AH:
\(-1\left(x+1\right)+4\left(y-2\right)=0\Leftrightarrow-x+4y-9=0\)
Hai đường cao còn lại viết tương tự, bạn tự giải
b/ Gọi \(M\) là trung điểm BC \(\Rightarrow M\left(\frac{3}{2};-2\right)\)
Do đường trung trực của BC vuông góc BC nên nhận \(\overrightarrow{n}=\left(-1;4\right)\) là 1 vtpt
Phương trình đường trung trực BC:
\(-1\left(x-\frac{3}{2}\right)+4\left(y+2\right)=0\Leftrightarrow-x+4y+\frac{19}{2}=0\)
Hai đường trung trực còn lại viết tương tự
Bài 2:
\(\overrightarrow{AB}=\left(2;6\right)\Rightarrow\) đường thẳng AB nhận \(\overrightarrow{n_{AB}}=\left(3;-1\right)\) là 1 vtpt
Phương trình AB:
\(3\left(x-1\right)-1\left(y-0\right)=0\Leftrightarrow3x-y-3=0\)
b/
Gọi phương trình đường thẳng d có dạng \(ax+by+c=0\)
Do d qua A \(\Rightarrow a.1+b.0+c=0\Leftrightarrow a+c=0\Rightarrow c=-a\)
Thay vào pt ban đầu: \(ax+by-a=0\)
Áp dụng công thức khoảng cách ta có:
\(d\left(B;d\right)=\frac{\left|3a+6b-a\right|}{\sqrt{a^2+b^2}}=2\)
\(\Leftrightarrow\left|2a+6b\right|=2\sqrt{a^2+b^2}\Leftrightarrow\left|a+3b\right|=\sqrt{a^2+b^2}\)
\(\Leftrightarrow a^2+6ab+9b^2=a^2+b^2\Leftrightarrow6ab+8b^2=0\)
\(\Leftrightarrow2b\left(3a+4b\right)=0\Rightarrow\left[{}\begin{matrix}b=0\\b=-\frac{3a}{4}\end{matrix}\right.\)
Có hai đường thẳng thỏa mãn:
\(\left[{}\begin{matrix}ax+0.y-a=0\\ax-\frac{3}{4}a.y-a=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-\frac{3}{4}y-1=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\4x-3y-4=0\end{matrix}\right.\)
Gọi phương trình đường thẳng đi qua hai điểm A(1;0) và B(2;4) là (d): \(y=ax+b\left(a\ne0\right)\)
Vì \(A\in\left(d\right)\) và \(B\in\left(d\right)\) nên ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}a\cdot1+b=0\\a\cdot2+b=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+b=0\\2a+b=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-a=-4\\a+b=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=4\\b=-4\end{matrix}\right.\)
Vậy: (d): y=4x-4