K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 3 2019

Chọn đáp án D.

25 tháng 2 2017

Đáp án A

Đặt t = log 1 3 a  với  a ∈ 1 9 ; 3 ⇒ t ∈ - 1 ; 2 .

Khi đó  P = 9 log 1 3 3 a 3 - log 1 3 a 3 + 1 = 1 3 log 1 3 a 3 - 3 log 1 3 a + 1 ⇒ P = f ( t ) = t 3 3 - 3 t + 1

Xét hàm số f t = t 3 3 - 3 t + 1  trên đoạn [-1;2] ta có:

f ' t = t 2 - 3 ; f ' t = 0 ⇔ t 2 = 3 - 1 ≤ t ≤ 2 ⇔ t = 3  

Tính các giá trị f - 1 = 11 3 ; f 2 = - 7 3 ; f 3 = 1 - 2 3  

 

Vậy giá trị lớn nhất của f(t) là f - 1 = 11 3  và giá trị nhỏ nhất của f(t) là f 3 = 1 - 2 3  

Do đó  3 M + 5 m = 3 . 11 3 + 5 1 - 2 3 = 16 - 10 3 = - 1 , 32

17 tháng 6 2017

Đặt  và giả thiết trở thành 

Suy ra 

Phương trình có nghiệm khi 

Chọn D.

4 tháng 11 2017

Đáp án B

Tập xác định: D = ℝ \ 1 2 ⇒  Hàm số y = m x + 1 2 x − 1  liên tục và đơn điệu trên 1 ; 3  

  ⇒ a . b = y 1 . y 3 = m + 1 1 . 3 m + 1 5 = 1 5

  ⇔ m + 1 3 m + 1 = 1 ⇔ 3 m 2 + 4 m = 0 ⇔ m = 0 m = − 4 3

Vậy có 2 giá trị m thỏa mãn.

9 tháng 9 2018

Đáp án đúng : D

23 tháng 10 2015

ta có

\(\)\(y=\frac{1}{3}\log^3_{\frac{1}{2}}x+\log^2_{\frac{1}{2}}x-3\log_{\frac{1}{2}}x+1\)

Đặt =\(t=\log_{\frac{1}{2}}x\) ta có

\(y=\frac{1}{3}t^3+t^2-3t+1\) 

với \(\frac{1}{4}\le x\le4\Leftrightarrow\frac{1}{4}\le\left(\frac{1}{2}\right)^t\le4\Leftrightarrow-2\le t\le2\)

thay vì tính GTLN,GTNN của hàm số y trên [1/4;4] ta tính GTLN,GTNN của hàm số trên [-2;2]

ta tính \(y'=t^2+2t-3\) 

ta tính y'=0 suy ra t=1(loại);t=-3(loại)

ta tính y(2)=\(\frac{5}{3}\);y(-2)=\(\frac{-25}{3}\)

vậy GTNN của y=\(\frac{-25}{3}khi\log_{\frac{1}{2}}x=-2\Rightarrow x=4\) 

hàm số đạt GTLN y=\(\frac{5}{3}\) khi \(\log_{\frac{1}{2}}x=2\Leftrightarrow x=\left(\frac{1}{2}\right)^2=\frac{1}{4}\)

27 tháng 8 2018

Đáp án A

10 tháng 8 2022

20 tháng 7 2017


6 tháng 10 2019

Đáp án B.

Từ

f x . f ' x = 2 x f 2 x + 1 ⇒ f x . f ' x f 2 x + 1 = 2 x ⇒ ∫ f x . f ' x f 2 x + 1 d x = ∫ 2 x d x

 (1)

Đặt  

f 2 x + 1 = t ⇒ f 2 x = t 2 − 1 ⇒ 2 f x . f ' x d x = 2 t d t ⇒ f x . f ' x d x = t d t

Suy ra   ∫ f x . f ' x f 2 x + 1 x = ∫ t d t t = ∫ d t = t + C 1 = f 2 x + 1 + C 1   ∫ 2 x d x = x 2 + C 2

Từ (1) ta suy ra  f 2 x + 1 + C 1 = x 2 + C 2   . Do   f 0 = 0 nên C 2 − C 1 = 1 .

Như vậy  

f 2 x + 1 = x 2 + C 2 − C 1 = x 2 + 1 ⇒ f 2 x = x 2 + 1 2 − 1 = x 4 + 2 x 2

⇒ f x = x 4 + 2 x 2 = x x 2 + 2 = x x 2 + 2

 (do x ∈ 1 ; 3 ).

Ta có f ' x = x 2 + 2 + x 2 x 2 + 2 = 2 x 2 + 1 x 2 + 2 > 0, ∀ x ∈ ℝ ⇒  Hàm số f x = x x 2 + 2  đồng biến trên R nên f x  cũng đồng biến trên  1 ; 3   .

Khi đó M = max 1 ; 3 f x = f 3 = 3 11  và m = min 1 ; 3 f x = f 1 = 3 .

Vậy 

P = 2 M − m = 6 11 − 3 ⇒ a = 6 ; b = 1 ; c = 0 ⇒ a + b + c = 7