Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi \(\overrightarrow{n}=\left(a,b\right)\) là vectơ pháp tuyến của CD (\(a^2+b^2\ne0\)
Ta có phương trình CD : \(ax+by+a+b=0\)
\(S_{BCD}=S_{ACD}=8\Rightarrow d\left(A;CD\right)=\frac{2.S}{CD}=2\Rightarrow d\left(M.CD\right)=1\)
\(\Rightarrow\frac{\left|2a-b\right|}{\sqrt{a^2+b^2}}=1\Leftrightarrow3a^2-4ab=0\)\(\rightarrow\begin{cases}a=0;b=1\\a=4;b=3\end{cases}\)\(\rightarrow\begin{cases}CD:y+1=0\\CD:4x+3y+7=0\end{cases}\)
Với \(CD:y+1=0\rightarrow D\left(d;-1\right);CD^2=4.AB^2=64\Leftrightarrow\begin{cases}d=7\\d=-9:L\end{cases}\)
\(D\left(7;-1\right);\overrightarrow{AB}=\frac{1}{2}\overrightarrow{DC}=\left(-4;0\right)\rightarrow B\left(-9;-3\right)\)
Với \(CD:4x+3y+7=0\rightarrow D\left(d;\frac{-4d-7}{3}\right)\rightarrow CD^2=\frac{25\left(d+1\right)^2}{9}=64\) (loại)
\(D\left(x;y\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AB}=\left(5;-10\right)\\\overrightarrow{CD}=\left(x+20;y\right)\end{matrix}\right.\) \(\Rightarrow\dfrac{x+20}{5}=\dfrac{y}{-10}\)
\(\Rightarrow y=-2x-40\) \(\Rightarrow D\left(x;-2x-40\right)\)
\(\left\{{}\begin{matrix}\overrightarrow{AC}=\left(-30;-5\right)\\\overrightarrow{BD}=\left(x-15;-2x-35\right)\end{matrix}\right.\)
\(AC=BD\Rightarrow30^2+5^2=\left(x-15\right)^2+\left(2x+35\right)^2\)
\(\Leftrightarrow5x^2+110x+525=0\Rightarrow x=...\Rightarrow D\left(...\right)\)
\(\overrightarrow{AB}=\left(-4;4\right)=-4\left(1;-1\right)\)
\(\Rightarrow\) Phương trình CD song song AB đi qua D có dạng:
\(1\left(x+6\right)+1\left(y+8\right)=0\Leftrightarrow x+y+14=0\)
Gọi M là trung điểm AB \(\Rightarrow M\left(-6;4\right)\)
Phương trình đường thẳng d qua M và vuông góc AB có dạng:
\(1\left(x+6\right)-1\left(y-4\right)=0\Leftrightarrow x-y+10=0\)
Gọi N là giao điểm CD và d \(\Rightarrow\) N là trung điểm CD do ABCD là hình thang cân
Tọa độ N là nghiệm: \(\left\{{}\begin{matrix}x+y+14=0\\x-y+10=0\end{matrix}\right.\) \(\Rightarrow N\left(-12;-2\right)\)
\(\Rightarrow\left\{{}\begin{matrix}x_C=2x_N-x_D=...\\y_C=2y_N-y_D=...\end{matrix}\right.\)
1.
a, Trọng Tâm G: \(\left\{{}\begin{matrix}x_G=\dfrac{x_A+x_B+x_C}{3}=\dfrac{8}{3}\\y_G=\dfrac{y_A+y_B+y_C}{3}=\dfrac{8}{3}\end{matrix}\right.\)
\(\Rightarrow G=\left(\dfrac{8}{3};\dfrac{8}{3}\right)\)
b, \(ABCD\) là hình bình hành \(\Leftrightarrow\vec{AB}=\vec{DC}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_B-x_A=x_C-x_D\\y_B-y_A=y_C-y_D\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_D=0\\y_D=6\end{matrix}\right.\)
\(\Rightarrow D=\left(0;6\right)\)
c, \(\vec{AM}=3\vec{BC}\Leftrightarrow\left\{{}\begin{matrix}x_M=x_A+3\left(x_C-x_B\right)=-6\\y_M=y_A+3\left(y_C-y_B\right)=14\end{matrix}\right.\)
\(\Rightarrow M=\left(-6;14\right)\)
-viết pt DC
- gọi điểm D theo DC
- theo t/c hình thang ta có : AC=BD => điểm D