Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì a, b >0 nên áp dụng bất đẳng thức Cô - si , ta có
\(a+b\ge2\sqrt{ab}\)(1)
Mad a,b >0 \(\Rightarrow\frac{1}{a},\frac{1}{b}\)cũng lớn hơn 0 , áp dụng Cô - si ta có
\(\frac{1}{a}+\frac{1}{b}\ge2\sqrt{\frac{1}{a}.\frac{1}{b}}=2\sqrt{\frac{1}{ab}}=\frac{2}{\sqrt{ab}}\)(2)
Từ (1) và (2) ta có :
\(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge2\sqrt{ab}.\frac{2}{\sqrt{ab}}\)=\(4\)
Vậy \(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge4\left(đpcm\right)\)
Cứ có bài toán nào đề bài cho là lớn hơn 0 thì cậu nghĩ ngay tới cô si nhé
áp dụng bất đẳng thức cô si ta có
a2+ b2 \(\ge\)2ab
\(\Rightarrow a^2+b^2+2ab\ge4ab\Rightarrow\frac{a^2+2ab+b^2}{ab}\ge\frac{4ab}{ab}\)\(\Rightarrow\frac{a^2+2ab+b^2}{ab}\ge4\)\(\Rightarrow\left(a+b\right)\left(\frac{a+b}{ab}\right)\ge4\)
\(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge4\) ( ĐPCM)
(a+b)(1/a+1/b)=1+a/b+b/a+1
vì a/b+b/a >= 2căn(a/b*b/a)
a/b+b/a >= 2
a/b+b/a +1+1 >= 2+1+1
(a+b)(1/a+1/b) >= 4
2.
\(\dfrac{\left(a+b\right)^2}{2}\ge2ab\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\) ( đúng )
Tương tự.......................
1. Xét hiệu : \(\dfrac{1}{a}-\dfrac{1}{b}=\dfrac{b-a}{ab}\)
Lại có: b - a < 0 ( a > b)
ab >0 ( a>0, b > 0)
\(\Rightarrow\dfrac{b-a}{ab}< 0\)
Vậy: \(\dfrac{1}{a}< \dfrac{1}{b}\)
2. Xét hiệu : \(\dfrac{\left(a+b\right)^2}{2}-2ab=\dfrac{a^2+2ab+b^2-4ab}{2}=\dfrac{\left(a-b\right)^2}{2}\ge0\)
Vậy : \(\dfrac{\left(a+b\right)^2}{2}\ge2ab\) Xảy ra đẳng thức khi a = b
3. Xét hiệu : \(\dfrac{a^2+b^2}{2}-ab=\dfrac{a^2+b^2-2ab}{2}=\dfrac{\left(a-b\right)^2}{2}\ge0\)
Vậy : \(\dfrac{a^2+b^2}{2}\ge ab\) Xảy ra đẳng thức khi a = b
\(\left(\dfrac{1}{a}-\dfrac{1}{b}\right).\left(a-b\right)\ge4\)
t có cách k dùng bdt cô-si luon nek , mà chắc lớp 8 k hẻo đeo:>
vì a+b+c = 2008 và 1/a + 1/b + 1/c = 1/2008 => 1/a + 1/ b + 1/c = 1/ (a+b+c)
\(\frac{bc}{abc}+\frac{ac}{abc}+\frac{ab}{abc}=\frac{1}{a+b+c}\Leftrightarrow\frac{bc+ac+ab}{abc}=\frac{1}{a+b+c}\Rightarrow\left(bc+ac+ab\right)\left(a+b+c\right)=abc\)
=>(a+b+c)(bc+ac+ab) - abc = 0
=> abc + a(ac+ab) + (b+c)(bc+ac+ab) - abc = 0
=> a2(b+c) + (b+c)(bc+ac+ab) = 0 => (b+c)(a2 + bc + ac + ab) = 0 => (b+c)[a(a+c) + b(a+c)] = 0
=> (b+c)(a+b)(a+c) = 0 => b+c = 0 hoặc a+b = 0 hoặc a+c = 0
Nếu b+c = 0 => a = 2008
nếu a+ b = 0 => c = 2008
Nếu a+c = 0 => b = 2008
Vậy....
\(\left(\frac{1}{a}+\frac{1}{b}\right)\left(a+b\right)=2+\frac{a^2+b^2}{ab}\ge4\)
\(\frac{a^2+b^2}{ab}\ge2\)
\(a^2+b^2\ge2ab\) (điều này đúng nên BĐT đúng)
Ta có \(\left(a-b\right)^2=a^2-2ab+b^2\Rightarrow a^2+b^2=2ab\Rightarrow\frac{a^2+b^2}{ab}=2\Rightarrow\frac{a}{b}+\frac{b}{a}=2\)
Lại có:\(\left(\frac{1}{a}+\frac{1}{b}\right)\left(a+b\right)=\frac{a}{a}+\frac{b}{a}+\frac{a}{b}+\frac{b}{b}=2+2=4\)
\(1\ge a+b\ge2\sqrt{ab}\Rightarrow ab\le\dfrac{1}{4}\) \(\Rightarrow\dfrac{1}{ab}\ge4\)
Do đó:
\(ab+\dfrac{1}{a^2}+\dfrac{1}{b^2}\ge ab+\dfrac{2}{ab}=\left(ab+\dfrac{1}{16ab}\right)+\dfrac{31}{16}.\dfrac{1}{ab}\ge2\sqrt{\dfrac{ab}{16ab}}+\dfrac{31}{16}.4=\dfrac{33}{4}\)
Dấu "=" xảy ra khi \(a=b=\dfrac{1}{2}\)
1/a+1/b>=4/a+b
<=> (a+b)/ab>=4/(a+b)
<=> (a+b)^2 >=4ab
<=> a^2 +2ab +b^2 - 4ab>=0
<=> (a-b)^2>=0 => đpcm
II>>
a^3+b^3>=ab(a+b)
<=> (a+b)(a^2 -ab+b^2)>=ab(a+b)
<=> a^2 -ab+b^2>=ab
<=> (a-b)^2 >=0 => đpcm
Vì a>0 và b>0 nên ta áp dụng bất đẳng thức cosi ta có:
\(\frac{1}{a}\)+\(\frac{1}{b}\)\(\ge\)2\(\sqrt{\frac{1}{ab}}\) (1)
a+b\(\ge\)2\(\sqrt{ab}\) (2)
nhân vế với vế của (1) và (2) ta có:
(\(\frac{1}{a}\)+\(\frac{1}{b}\))(a+b)\(\ge\)2\(\sqrt{\frac{1}{ab}}\).2\(\sqrt{ab}\)
=>(\(\frac{1}{a}\)+\(\frac{1}{b}\))(a+b)\(\ge\)4
dấu = xảy ra khi a=b
Ta có: a - b 2 ≥ 0
⇔ a 2 + b 2 – 2ab ≥ 0
⇔ a 2 + b 2 – 2ab + 2ab ≥ 2ab
⇔ a 2 + b 2 ≥ 2ab
Vì a ≥ 0, b ≥ 0 nên ab ≥ 0 ⇒ 1/ab ≥ 0
( a 2 + b 2 ).1/ab ≥ 2ab.1/ab
⇔ a/b + b/a ≥ 2
⇔ 2 + a/b + b/a ≥ 2 + 2
⇔ 2 + a/b + b/a ≥ 4
⇔ 1 + 1 + a/b + b/a ≥ 4
⇔ a/a + b/b + a/b + b/a ≥ 4
⇔ a(1/a + 1/b ) + b(1/a + 1/b ) ≥ 4
⇔ (a + b)(1/a + 1/b ) ≥ 4