\(-8.x=2\)và \(16y=-320\)

Tính:

A)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 9 2016

Theo đề bài, ta có: 

\(-8x=2\Rightarrow x=\frac{2}{-8}=-\frac{1}{4}\)

\(16y=-320\Rightarrow y=-\frac{320}{16}=-20\)

\(\Rightarrow x:y=-\frac{1}{4}-\left(-20\right)=19,75\)

\(\Rightarrow4x-7y=\left(-\frac{1}{4}.4\right)-\left(7.\left(-20\right)\right)=-1-\left(-140\right)=139\)

1 tháng 9 2016

\(-8x=2\Rightarrow x=-\frac{1}{4}\)

\(-16y=320\Rightarrow y=-20\)

a) Thay vào ta có

\(x-y=-\frac{1}{4}-\left(-20\right)=\frac{79}{4}\)

b) Thay vào ta có

\(4x-7y=4\left(-\frac{1}{4}\right)-7\left(-20\right)=-1-\left(-140\right)=139\)

26 tháng 12 2017

1) Áp dụng BĐT Bunhiacopski

P = \(6\sqrt{x-1}+8\sqrt{3-x}\le\sqrt{\left(6^2+8^2\right)\left(x-1+3-x\right)}=10\sqrt{2}\)

Vậy Min P = \(10\sqrt{2}\) khi x = 43/25

27 tháng 12 2017

2) a) \(\Rightarrow A-5=y-2x=4y.\dfrac{1}{4}+\left(-6x\right).\dfrac{1}{3}\)

Áp dụng BĐT bunhiacopski

\(\Rightarrow\left(A-5\right)^2=\left(4y.\dfrac{1}{4}+\left(-6x\right).\dfrac{1}{3}\right)^2\) \(\le\left(16y^2+36x^2\right)\left(\dfrac{1}{16}+\dfrac{1}{9}\right)=\dfrac{25}{16}\)

\(\Rightarrow-\dfrac{5}{4}\le A-5\le\dfrac{5}{4}\Rightarrow\dfrac{15}{4}\le A\le\dfrac{25}{4}\)

...........

b) tương tự

30 tháng 3 2017

a) Ta có : -2a = -2 => a = 1

-2b = -2 => b = 1 => I(1; 1)

R2 = a2 + b2 – c = 12 + 12 – (-2) = 4 => R = 2

b) Tương tự, ta có : I \(\left(-\dfrac{1}{2};\dfrac{1}{4}\right)\); R = 1

c) I(2; -3); R = 4

7 tháng 3 2018

\(\text{a)2x^2y + x - y tại x= -1 và y= 1}\)

\(=2\left(-1\right)^2.1+-1-\left(-1\right)\)

\(=2\)

\(\text{b)7xy. (x-y) tại x=2 và y=1}\)

\(=7.2.1\left(2-1\right)=14\)

\(c)5x^4y^2+4x^4y^2=9x^4y^2\)

\(=9.\left(-2\right)^4.3^2=2304\)

\(d)\dfrac{1}{2}x^3y-\dfrac{2}{4}x^3y+\dfrac{1}{8}x^3y=\left(\dfrac{1}{2}-\dfrac{2}{4}+\dfrac{1}{8}\right)x^3y\)

\(=\dfrac{1}{8}\left(-1\right)^3.1=-\dfrac{1}{8}\)

Nhớ tick nha. chúc may mắnhihi

7 tháng 3 2018

lớp 10 ??

cái này lớp 7 thôi (lớp 10 hỏi cái này về lớp 6 cho khỏe)

13 tháng 4 2017

a) Bảng biến thiên:

Đồ thị: - Đỉnh:

- Trục đối xứng:

- Giao điểm với trục tung A(0; 1)

- Giao điểm với trục hoành , C(1; 0).

(hình dưới).

b) y = - 3x2 + 2x – 1=

Bảng biến thiên:

Vẽ đồ thị: - Đỉnh Trục đối xứng: .

- Giao điểm với trục tung A(0;- 1).

- Giao điểm với trục hoành: không có.

Ta xác định thêm mấy điểm: B(1;- 2), C(1;- 6). (bạn tự vẽ).

c) y = 4x2 - 4x + 1 = .

Lập bảng biến thiên và vẽ tương tự câu a, b.

d) y = - x2 + 4x – 4 = - (x – 2)2

Bảng biến thiên:

Cách vẽ đồ thị:

Ngoài cách vẽ như câu a, b, ta có thể vẽ như sau:

+ Vẽ đồ thị (P) của hàm số y = - x2.

+ Tịnh tiến (P) song song với Ox sang phải 2 đơn vị được (P1) là đồ thị cần vẽ. (hình dưới).

e) y = 2x2+ x + 1;

- Đỉnh I \(\left(\dfrac{-1}{4};\dfrac{-7}{8}\right)\)

- Trục đối xứng :\(x=\dfrac{-1}{4}\)

- Giao Ox: Đồ thị không giao với trục hoành

- Giao Oy: Giao với trục tung tại điểm (0;1)

Bảng biến thiên:

Vẽ đồ thị theo bảng sau:

x -2 -1 0 1 2
y 7 2 1 4 11

f) y = - x2 + x - 1.

- Đỉnh I \(\left(\dfrac{1}{2};\dfrac{-3}{4}\right)\)

- Trục đối xứng : \(x=\dfrac{1}{2}\)

- Giao Ox: Đồ thị không giao với trục hoành

- Giao Oy: Giao với trục tung tại điểm (0;-1)

Bảng biến thiên:

Vẽ đồ thị theo bảng sau:

x -2 -1 0 1 2
y -7 -3 -1 -1 -3



25 tháng 4 2019

bạn có thể trình bày chi tiết bài làm giúp mình không ?

NV
2 tháng 5 2019

\(9x^2+16y^2-144=0\Leftrightarrow\frac{x^2}{16}+\frac{y^2}{9}=1\) là pt chính tắc elip

Bài 2:

I là tâm đường tròn \(\Rightarrow I\) là trung điểm AB \(\Rightarrow I\left(3;5\right)\)

\(R=IA=\sqrt{1^2+2^2}=\sqrt{5}\)

Phương trình: \(\left(x-3\right)^2+\left(y-5\right)^2=5\)

\(\Leftrightarrow x^2+y^2-6x-10y+29=0\)

21 tháng 9 2017

Từ \(\dfrac{a}{1+a}+\dfrac{2b}{2+b}+\dfrac{3c}{3+c}\le\dfrac{6}{7}\)

\(\Leftrightarrow1-\dfrac{a}{1+a}+2-\dfrac{2b}{2+b}+3-\dfrac{3c}{3+c}\ge6-\dfrac{6}{7}\)

\(\Leftrightarrow\dfrac{1}{a+1}+\dfrac{4}{b+2}+\dfrac{9}{c+3}\ge\dfrac{36}{7}\)

Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:

\(VT=\dfrac{1}{a+1}+\dfrac{4}{b+2}+\dfrac{9}{c+3}\)

\(\ge\dfrac{\left(1+2+3\right)^2}{a+b+c+6}=\dfrac{36}{7}=VP\)

Xảy ra khi \(a=\dfrac{1}{6};b=\dfrac{1}{3};c=\dfrac{1}{2}\)

21 tháng 9 2017

2) \(\dfrac{1}{x}+\dfrac{25}{y}+\dfrac{64}{z}=\dfrac{4}{4x}+\dfrac{225}{9y}+\dfrac{1024}{16z}\ge\dfrac{\left(2+15+32\right)^2}{4x+9y+6z}=49\)