Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Áp dụng BĐT Bunhiacopski
P = \(6\sqrt{x-1}+8\sqrt{3-x}\le\sqrt{\left(6^2+8^2\right)\left(x-1+3-x\right)}=10\sqrt{2}\)
Vậy Min P = \(10\sqrt{2}\) khi x = 43/25
2) a) \(\Rightarrow A-5=y-2x=4y.\dfrac{1}{4}+\left(-6x\right).\dfrac{1}{3}\)
Áp dụng BĐT bunhiacopski
\(\Rightarrow\left(A-5\right)^2=\left(4y.\dfrac{1}{4}+\left(-6x\right).\dfrac{1}{3}\right)^2\) \(\le\left(16y^2+36x^2\right)\left(\dfrac{1}{16}+\dfrac{1}{9}\right)=\dfrac{25}{16}\)
\(\Rightarrow-\dfrac{5}{4}\le A-5\le\dfrac{5}{4}\Rightarrow\dfrac{15}{4}\le A\le\dfrac{25}{4}\)
...........
b) tương tự
\(\text{a)2x^2y + x - y tại x= -1 và y= 1}\)
\(=2\left(-1\right)^2.1+-1-\left(-1\right)\)
\(=2\)
\(\text{b)7xy. (x-y) tại x=2 và y=1}\)
\(=7.2.1\left(2-1\right)=14\)
\(c)5x^4y^2+4x^4y^2=9x^4y^2\)
\(=9.\left(-2\right)^4.3^2=2304\)
\(d)\dfrac{1}{2}x^3y-\dfrac{2}{4}x^3y+\dfrac{1}{8}x^3y=\left(\dfrac{1}{2}-\dfrac{2}{4}+\dfrac{1}{8}\right)x^3y\)
\(=\dfrac{1}{8}\left(-1\right)^3.1=-\dfrac{1}{8}\)
Nhớ tick nha. chúc may mắn
lớp 10 ??
cái này lớp 7 thôi (lớp 10 hỏi cái này về lớp 6 cho khỏe)
a) Bảng biến thiên:
Đồ thị: - Đỉnh:
- Trục đối xứng:
- Giao điểm với trục tung A(0; 1)
- Giao điểm với trục hoành , C(1; 0).
(hình dưới).
b) y = - 3x2 + 2x – 1=
Bảng biến thiên:
Vẽ đồ thị: - Đỉnh Trục đối xứng: .
- Giao điểm với trục tung A(0;- 1).
- Giao điểm với trục hoành: không có.
Ta xác định thêm mấy điểm: B(1;- 2), C(1;- 6). (bạn tự vẽ).
c) y = 4x2 - 4x + 1 = .
Lập bảng biến thiên và vẽ tương tự câu a, b.
d) y = - x2 + 4x – 4 = - (x – 2)2
Bảng biến thiên:
Cách vẽ đồ thị:
Ngoài cách vẽ như câu a, b, ta có thể vẽ như sau:
+ Vẽ đồ thị (P) của hàm số y = - x2.
+ Tịnh tiến (P) song song với Ox sang phải 2 đơn vị được (P1) là đồ thị cần vẽ. (hình dưới).
e) y = 2x2+ x + 1;
- Đỉnh I \(\left(\dfrac{-1}{4};\dfrac{-7}{8}\right)\)
- Trục đối xứng :\(x=\dfrac{-1}{4}\)
- Giao Ox: Đồ thị không giao với trục hoành
- Giao Oy: Giao với trục tung tại điểm (0;1)
Bảng biến thiên:
Vẽ đồ thị theo bảng sau:
x | -2 | -1 | 0 | 1 | 2 |
y | 7 | 2 | 1 | 4 | 11 |
f) y = - x2 + x - 1.
- Đỉnh I \(\left(\dfrac{1}{2};\dfrac{-3}{4}\right)\)
- Trục đối xứng : \(x=\dfrac{1}{2}\)
- Giao Ox: Đồ thị không giao với trục hoành
- Giao Oy: Giao với trục tung tại điểm (0;-1)
Bảng biến thiên:
Vẽ đồ thị theo bảng sau:
x | -2 | -1 | 0 | 1 | 2 |
y | -7 | -3 | -1 | -1 | -3 |
\(9x^2+16y^2-144=0\Leftrightarrow\frac{x^2}{16}+\frac{y^2}{9}=1\) là pt chính tắc elip
Bài 2:
I là tâm đường tròn \(\Rightarrow I\) là trung điểm AB \(\Rightarrow I\left(3;5\right)\)
\(R=IA=\sqrt{1^2+2^2}=\sqrt{5}\)
Phương trình: \(\left(x-3\right)^2+\left(y-5\right)^2=5\)
\(\Leftrightarrow x^2+y^2-6x-10y+29=0\)
Từ \(\dfrac{a}{1+a}+\dfrac{2b}{2+b}+\dfrac{3c}{3+c}\le\dfrac{6}{7}\)
\(\Leftrightarrow1-\dfrac{a}{1+a}+2-\dfrac{2b}{2+b}+3-\dfrac{3c}{3+c}\ge6-\dfrac{6}{7}\)
\(\Leftrightarrow\dfrac{1}{a+1}+\dfrac{4}{b+2}+\dfrac{9}{c+3}\ge\dfrac{36}{7}\)
Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:
\(VT=\dfrac{1}{a+1}+\dfrac{4}{b+2}+\dfrac{9}{c+3}\)
\(\ge\dfrac{\left(1+2+3\right)^2}{a+b+c+6}=\dfrac{36}{7}=VP\)
Xảy ra khi \(a=\dfrac{1}{6};b=\dfrac{1}{3};c=\dfrac{1}{2}\)
2) \(\dfrac{1}{x}+\dfrac{25}{y}+\dfrac{64}{z}=\dfrac{4}{4x}+\dfrac{225}{9y}+\dfrac{1024}{16z}\ge\dfrac{\left(2+15+32\right)^2}{4x+9y+6z}=49\)
Theo đề bài, ta có:
\(-8x=2\Rightarrow x=\frac{2}{-8}=-\frac{1}{4}\)
\(16y=-320\Rightarrow y=-\frac{320}{16}=-20\)
\(\Rightarrow x:y=-\frac{1}{4}-\left(-20\right)=19,75\)
\(\Rightarrow4x-7y=\left(-\frac{1}{4}.4\right)-\left(7.\left(-20\right)\right)=-1-\left(-140\right)=139\)
\(-8x=2\Rightarrow x=-\frac{1}{4}\)
\(-16y=320\Rightarrow y=-20\)
a) Thay vào ta có
\(x-y=-\frac{1}{4}-\left(-20\right)=\frac{79}{4}\)
b) Thay vào ta có
\(4x-7y=4\left(-\frac{1}{4}\right)-7\left(-20\right)=-1-\left(-140\right)=139\)