K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 10 2017

Đáp án C

Số phần tử của không gian mẫu là số các tổ hợp chập 3 của 8 phần tử

 

Gọi A là biến cố “Lấy được 3 quả cân có tổng trọng lượng không vượt quá 9kg”

n(A) = 7 

Xác suất xảy ra biến cố A là:

P ( A ) = 7 56 = 1 8 a 

7 tháng 7 2017

Đáp án C

Các trường hợp thuận lợi là (6;2;1), (5;2;1), (5;2;1), (4;3;2), (4;3;1), (4;2;1), (3;2;1).

Không gian mẫu  Ω = C 8 3 = 56 ⇒ p = 7 56 = 1 8 .

Gọi A là biến cố chọn được 3 quả cân có tổng trọng lượng không vượt quá 9 kg.

Suy ra A có các trường hợp sau:

A = { (1, 2, 3); (1, 2, 4); (1, 2, 5); (1, 2, 6); (1, 3, 4); (1, 3, 5); (2, 3, 4)}

P=7C38=18⇒P=7C83=18

Vậy xác suất để trọng lượng 3 quả cân được chọn không quá 9 kg là: 18

AH
Akai Haruma
Giáo viên
1 tháng 12 2019

Lời giải:
Chọn ngẫu nhiên 3 quả cân trong số 8 quả cân, có $C^3_8=56$ cách chọn

Chọn 3 quả cân mà trọng lượng không vượt quá 9 kg có các TH sau:

$(1,2,3); (1,2,4); (1,2,5); (1,2,6); (1,3,4); (1,3,5); (2,3,4)$ (có 7 cách chọn)

Do đó xác suất để chọn được 3 quả cân có trọng lượng không vượt quá 9kg là: $\frac{7}{56}=\frac{1}{8}$

6 tháng 8 2020

2, sin4x+cos5=0 <=> cos5x=cos\(\left(\frac{\pi}{2}+4x\right)\Leftrightarrow\orbr{\begin{cases}x=\frac{\pi}{2}+k2\pi\\x=-\frac{\pi}{18}+\frac{k2\pi}{9}\end{cases}\left(k\inℤ\right)}\)

ta có \(2\pi>0\Leftrightarrow k< >\frac{1}{4}\)do k nguyên nên nghiệm dương nhỏ nhất trong họ nghiệm \(\frac{\pi}{2}\)khi k=0

\(-\frac{\pi}{18}+\frac{k2\pi}{9}>0\Leftrightarrow k>\frac{1}{4}\)do k nguyên nên nghiệm dương nhỏ nhất trong họ nghiệm \(-\frac{\pi}{18}-\frac{k2\pi}{9}\)là \(\frac{\pi}{6}\)khi k=1

vậy nghiệm dương nhỏ nhất của phương trình là \(\frac{\pi}{6}\)

\(\frac{\pi}{2}+k2\pi< 0\Leftrightarrow k< -\frac{1}{4}\)do k nguyên nên nghiệm âm lớn nhất trong họ nghiệm \(\frac{\pi}{2}+k2\pi\)là \(-\frac{3\pi}{2}\)khi k=-1

\(-\frac{\pi}{18}+\frac{k2\pi}{9}< 0\Leftrightarrow k< \frac{1}{4}\)do k nguyên nên nghiệm âm lớn nhất trong họ nghiệm \(-\frac{\pi}{18}+\frac{k2\pi}{9}\)là \(-\frac{\pi}{18}\)khi k=0

vậy nghiệm âm lớn nhất của phương trình là \(-\frac{\pi}{18}\)

8 tháng 9 2019

ĐK: \(x\ne\frac{k\pi}{2}\)

pt<=> \(8\sin x-\frac{4}{\sin x}=\frac{3}{\cos x}-\frac{3}{\sin x}\)

<=> \(4.\frac{2\sin^2x-1}{\sin x}=3.\frac{\sin x-\cos x}{\sin x.\cos x}\)

\(\Leftrightarrow4.\frac{\sin^2x-\cos^2x}{\sin x}=3.\frac{\sin x-\cos x}{\sin x.\cos x}\)

\(\Leftrightarrow4.\left(\sin x+\cos x\right)\left(\sin x-\cos x\right)=3\frac{\sin x-\cos x}{\cos x}\)

\(\Leftrightarrow\orbr{\begin{cases}\sin x-\cos x=0\left(1\right)\\4\left(\sin x+\cos x\right)=\frac{3}{\cos x}\left(2\right)\end{cases}}\)

(1) \(\Leftrightarrow\sqrt{2}\sin\left(x+\frac{\pi}{4}\right)=0\) ( tự giải nhé)

(2) \(\Leftrightarrow4\sin x.\cos x+4\cos x.\cos x=3\)

\(\Leftrightarrow2\sin2x+2\cos2x+2=3\)

\(\Leftrightarrow\sin2x+\cos2x=\frac{1}{2}\)

\(\Leftrightarrow\sqrt{2}\cos\left(2x+\frac{\pi}{4}\right)=\frac{1}{2}\)Tự giải nhé!

10 tháng 2 2021

xin fb chj ;-;