K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 1 2017

Gọi d là ước chung của 7n+3 và 8n+1

=> 7n+3 chia hết cho d => 8(7n+3)=56n+24 chia hết cho d

=> 8n+1 chia hết cho d => 7(8n+1)=56n+7 chia hết cho d

=> 8(7n+3)-7(8n+1)=11 chia hết cho d => d={1; 11} => hai số trên không thể NT cùng nhau

22 tháng 11 2017

Gọi d là ước chung của 7n+3 và 8n+1 => 7n+3 chia hết cho d => 8(7n+3)=56n+24 chia hết cho d => 8n+1 chia hết cho d => 7(8n+1)=56n+7 chia hết cho d => 8(7n+3)-7(8n+1)=11 chia hết cho d => d={1; 11} => hai số trên không thể NT cùng nhau

9 tháng 11 2015

1) (2n-1;9n+4)=(2n-1;n+8)=(17;n+8)=1 hoặc 17

2)  (7n+3;8n-1) =(7n+3;n-4)=(31;n-4)=1 hoặc 31

24 tháng 10 2015

Gọi ƯC(7n+13,2n+4)=d

Ta có: 7n+13 chia hết cho d=>2.(7n+13)=14n+26 chia hết cho d

           2n+4 chia hết cho d=>7.(2n+4)=14n+28 chia hết cho d

=>14n+28-(14n+26) chia hết cho d

=>2 chia hết cho d

=>d=Ư(2)=(1,2)

Để 7n+13 và 2n+4 là nguyên tố cùng nhau

=>d=1

=>d khác 2

=>7n+13 không chia hết cho 2

=>7n+13 khác 2k

=>7k khác 2k-13

=>k khác (2k-13)/2

20 tháng 11 2015

Gọi ƯCLN(7n+3; 8n -1) = d ( d thuộc N*)
=> 7n+3 chia hết cho d
=> 8n-1 chia hết cho d
=>8(7n+3) chia hết cho d
=>7(8n-1) chia hết cho d
=>56n+24 chia hết cho d
=>56n-7 chia hết cho d
=> (56n+24) - (56n - 7) chia hết cho d
=> 31 chia hết cho d
Mà d thuộc N*
=> d thuộc { 1; 31}
Giả sử d =31
=> 7n + 3 chia hết cho 31
=> 7n+3 - 31 chia hết cho 31 ( do 31 chia hết cho 31)
=> 7n -28 chi hết cho 31
=>7(n-4) chia hết cho 31
Mà (7,31) =1
=> n-4 chia hết cho 31
=>n chia 31 dư4
=> n thuộc { 4 ; 35 ; 66 ; 97 ; ........}
Vậy để thỏa mãn  thì điều kiện của n : n từ 40 đến 90 và khác 66

 

8 tháng 2 2019

thanks

27 tháng 10 2018

a.1

b.1

c.1

1 tháng 11 2020

Giải thế ai hiểu nổi hả trời???

28 tháng 11 2017

Cần gấp không bạn?

28 tháng 11 2017

Gọi d là \(ƯC\left(7n+3;8n-1\right)\). Suy ra:

\(7n+3⋮d;8n-1\)

\(\Rightarrow56n+24⋮d;56n-7⋮d\)

\(\Rightarrow31⋮d\)

\(\Rightarrow d\in\left\{1;31\right\}\)

Nếu \(7n+3⋮31\)

\(\Rightarrow7n+3-31⋮31\)

\(\Rightarrow7n-28⋮31\)

\(\Rightarrow7.\left(n-4\right)=31\)vì: \(\left(7,31\right)=1\)

\(\Rightarrow n-4⋮31\) 

\(\Rightarrow n-4=31k\)(với k thuộc N)

\(\Rightarrow n=31k+4\)

Thay vào: \(8n-1=8.\left(31k+4\right)-1=8.31k+31=31.\left(8k+1\right).31\)

\(\RightarrowƯCLN\left(7n+3;8n-1\right)=31\)nếu \(n=31k+4\)(Với k thuộc N)

Với: \(n\ne31k+4\)thì \(ƯCLN\left(7n+3;8n-1\right)=1\)(Với k thuộc N)

Để hai số 7n + 3 và 8n - 1 là hai số nguyên tố cùng nhau <=> UCLN(7n + 3; 8n - 1) = 1

\(\Leftrightarrow n\ne31k+4\)(Với k thuộc N)

27 tháng 10 2024

Bài 1: Gọi ước chung lớn nhất của n + 1 và 7n + 4 là d

Ta có: \(\left\{{}\begin{matrix}n+1⋮d\\7n+4⋮d\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}7n+7⋮d\\7n+4⋮d\end{matrix}\right.\) ⇒ 7n+ 7 - 7n - 4 ⋮ d

⇒ (7n - 7n) + (7 - 4) ⋮ d ⇒0 + 3 ⋮ d ⇒ 3 ⋮ d ⇒ d \(\in\) Ư(3) = {1; 3}

Nếu n = 3 thì n + 1 ⋮ 3 ⇒ n = 3k - 1 khi đó hai số sẽ không nguyên tố cùng nhau.

Vậy để hai số nguyên tố cùng nhau thì n \(\ne\) 3k - 1

Kết luận: n \(\ne\) 3k - 1 

 

 

 

27 tháng 12 2021

Vì 2n+1 và 7n+6 là 2 số nguyên tố cùng nhau

=> ƯCLN(2n+1;7n+6) = 1

Vậy ƯCLN của 2n+1 và 7n+6 là 1

_HT_