Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta sẽ dùng phản chứng
Gọi 4 cạnh của tứ giác là a , b , c , d ( a,b,c,d \(\inℕ^∗\))
Giả sử không có bất kì 2 cạnh nào bằng nhau
Đặt \(\hept{\begin{cases}x=\frac{b+c+d}{a}\\y=\frac{c+d+a}{b}\\z=\frac{d+a+b}{c}\end{cases}}\left(x;y;z\inℕ^∗\right)\)(Do tổng 3 cạnh bất kì chia hết cho cạnh còn lại)
Theo bất đẳng thức trong tứ giác thì dễ thấy \(x;y;z>1\)
Mà x,y,z là số tự nhiên nên \(x;y;z\ge2\)
Không mất tính tổng quát của bài toán ta giả sử a > b > c > d thì khi đó x < y < z
Ta có : \(\hept{\begin{cases}x\ge2\\y>x\end{cases}}\Rightarrow y\ge3\)
tương tự : \(z\ge4\)
Từ điều giả sử\(\Rightarrow\) \(\hept{\begin{cases}b+c+d\ge2a\\c+d+a\ge3b\\d+a+b\ge4c\end{cases}}\)
Cộng 3 vế vào ta được \(2a+2b+2c+3d\ge2a+3b+4c\)
\(\Rightarrow3d\ge b+2c\)(Vô lí do b > c > d)
Nên điều giả sử là sai
Vậy luôn tồn tại ít nhất 2 cạnh bằng nhau trong tứ giác đó
Giả sử trong 50 số tự nhiên nói trên tồn tại 5 số khác nhau, không mất tính tổng quát, giả sử \(a>b>c>d>e\)
Do 4 số bất kì đều lập thành 1 tỉ lệ thức, nên ta có các điều sau:
\(ad=bc\) (1); \(ae=bc\) (2)
Từ (1); (2) \(\Rightarrow d=e\) trái giả thiết \(d>e\)
Vậy điều giả sử là sai hay trong 50 số nói trên chỉ tồn tại nhiều nhất 4 số bằng nhau
Theo nguyên lý Dirichlet thì có ít nhất \(\left[\frac{50}{4}\right]+1=13\) số bằng nhau
y=ax+b thì a gọi là hệ số góc