K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2016

Ta chọn điểm O bất kì nằm trong mặt phẳng chứa 5 đường thẳng ấy. Qua O ta dựng các đường thẳng song song với các đường thẳng đã cho , khi đó có 10 góc đôi một đối đỉnh qua O . Vậy sẽ có ít nhất một góc không vượt quá \(\frac{180^o}{5}=36^o\)

28 tháng 2 2020

'

'

'

'

'

'

7 tháng 4 2017

Ta có :

\(\widehat{xOs}\)= 400(theo giải thiết)

\(\widehat{tOy}\)=400( đối đỉnh với \(\widehat{xOs}\))

\(\widehat{xOt}\) + \(\widehat{tOy}\)= 1800

\(\Rightarrow\widehat{xOt}\) = \(\widehat{tOy}\) \(=180^0-40^0=140^0\)

\(\widehat{yOs}=140^0\)(đối đỉnh với \(\widehat{xOt}\))

\(\widehat{xOy}=\widehat{sOt}=180^0\)

9 tháng 6 2016

Bài này hôm qua mình giải rồi. bạn xem bài những bài giải lớp 9 ngày hôm qua sẽ có nhé 

22 tháng 4 2019

Giải bài 2 trang 69 SGK Toán 9 Tập 2 | Giải toán lớp 9Giải bài 2 trang 69 SGK Toán 9 Tập 2 | Giải toán lớp 9

21 tháng 5 2018

Giải bài 2 trang 69 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 2 trang 69 SGK Toán 9 Tập 2 | Giải toán lớp 9

1. Cho tam giác ABC có đọ dài các đường hân giác trog nhỏ hơn 1.Chứng minh rằng diện tích tam giác đó nhỏ hơn \(\frac{\sqrt{3}}{3}\)2. Trên mặt phẳng cho 2012 điểm , khoảng cách giữa chúng đôi một khác nhau. Nối mỗi điểm trong 2012 điểm này với điểm gần nhất.CMR với cách nối này ta không thể nhận được một đường gấp khúc khép kín3. Trên mặt phẳng cho 2012 điểm không thẳng hàng.CMR tồn...
Đọc tiếp

1. Cho tam giác ABC có đọ dài các đường hân giác trog nhỏ hơn 1.

Chứng minh rằng diện tích tam giác đó nhỏ hơn \(\frac{\sqrt{3}}{3}\)

2. Trên mặt phẳng cho 2012 điểm , khoảng cách giữa chúng đôi một khác nhau. Nối mỗi điểm trong 2012 điểm này với điểm gần nhất.

CMR với cách nối này ta không thể nhận được một đường gấp khúc khép kín

3. Trên mặt phẳng cho 2012 điểm không thẳng hàng.

CMR tồn tại một đường tròn đi qua 3 trong 2012 điểm đã cho mà đường tròn này không chứa bất kì điểm nào trong số những điểm còn lại

4. Trên mặt phẳng cho n điểm sao cho khoảng cách giữa 2 điểm bất kì đôi một khác nhau. Người ta nối mỗi điểm với điểm gần nhất.

CMR qua mỗi điểm co không quá 5 đoạn thẳng

5. Cho 7 số nguyên dương khác nhau không vượt quá 1706. 

CMR tồn tại 3 số a, b, c trong chúng sao cho a<b+c<4a

1
20 tháng 4 2018

 Trên mặt phẳng cho n > = điểm sao cho khoảng cách giữa 2 điểm bất kì đôi một khác nhau. Người ta nối mỗi điểm với điểm gần nhất.

CMR qua mỗi điểm co không quá 5 đoạn thẳng

13 tháng 1 2018

Cho ∆ABC vuông tại A, có .......mình ghi thiếu

1. Trên mặt phẳng cho 2n điểm. Trong đó n điểm được tô màu đỏ và n điểm được tô màu xanh. CMR có ther kẻ được n đoạn thẳng, mỗi đầu mút được tô màu khác nhau và hai đoạn thẳng bất kỳ không có điểm chung,2. Trên mặt phẳng cho 25 điểm sao cho trong 3 điểm bất kì luôn có 2 điểm cách nhau một khoãng không vượt quá 1. Chúng minh rằng có đường ròn bán kính 1 chứa trong đó ít nhất 13...
Đọc tiếp

1. Trên mặt phẳng cho 2n điểm. Trong đó n điểm được tô màu đỏ và n điểm được tô màu xanh. CMR có ther kẻ được n đoạn thẳng, mỗi đầu mút được tô màu khác nhau và hai đoạn thẳng bất kỳ không có điểm chung,

2. Trên mặt phẳng cho 25 điểm sao cho trong 3 điểm bất kì luôn có 2 điểm cách nhau một khoãng không vượt quá 1. Chúng minh rằng có đường ròn bán kính 1 chứa trong đó ít nhất 13 điểm

3. Cho p là số nguyên tố lớn hơn 3 và n thuộc N*. CMR pn không thể là tổng lập phương của hai số dương

4. Cho 10 điểm phân biệt không có 3 điểm nào thẳng hàng ằm trong một tam giac đều có cạnh bằng 2 cm. CMR luôn tìm được 3 điểm trong 10 điểm đã cho sao cho 3 đỉnh của 3 điểm này tạo thành 1 tam giac có diện tích không vượt quá\(\frac{\sqrt{3}}{3}cm^2\) và có một góc nhỏ hơn 45o

0