Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án là B
Các đường thẳng là: AB, AC, AD, AE, BC, BD, BE, CD, CE, DE
Vậy có tất cả 10 đường thẳng cần tìm.
Số đường thẳng vẽ đc là:
\(\frac{5\left(5-1\right)}{2}=10\)(đường thẳng)
Các đg thẳng đó là: AB;AC;AD;AE;BC;BD;BE;CD;CE;DE
- Có năm đường thảng phân biệt trong hình vẽ, đó là: EA , EB , EC , ED , AB .
- Hai đường thẳng AB và CD trùng nhau; đường thẳng a song song với đường thẳng AB nên cũng song song với đường thẳng CD. Do đó, đường thẳng a không cắt đường thẳng CD.
a)
b) Có 10 đường thẳng đi qua 5 điểm nói trên. Đó là: AB , AC , AD , AE , BC , BD , BE , CD , CE , DE
a) Vẽ được 10 đường thẳng. Các đường thẳng đó là AB, AC, AD, AE, BC, BD, BE, CD, CE, DE.
b) Vẽ được \(\dfrac{n\left(n-1\right)}{2}\) đường thẳng.
c) \(\dfrac{n\left(n-1\right)}{2}\)=28 \(\Rightarrow\) n=8.
Vậy có 8 điểm phân biệt cho trước thỏa yêu cầu đề bài.
a) Chọn một điểm trong năm điểm đã cho thì ta nối điểm đó với 4 điểm còn lại tạo thành 4 đường thẳng. Làm như vậy với tất cả 5 điểm ta được 4.5 = 20 đường thẳng. Khi đó, mỗi đường thẳng được tính 2 lần (ví dụ đường thẳng AB và đường thẳng BA chỉ là một). Do đó, số đường thẳng thực tế là 20:2 = 10.
b) Lập luận tương tự ý a), thay số 5 bằng n. Ta có số đường thẳng là n ( n − 1 ) 2
Đáp án là B
Các đường thẳng là: AB, AC, AD, AE, BC, BD, BE, CD, CE, DE
Vậy có tất cả 10 đường thẳng cần tìm.