Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bất đẳng thức Bunyakovsky cho hai bộ số \(\left(2^2+1^2\right)\) và \(\left(4x^2+y^2\right)\), ta được:
\(\left(2^2+1^2\right)\left(4x^2+y^2\right)\ge\left(2.2x+1.y\right)^2\)
nên \(5\left(4x^2+y^2\right)\ge\left(4x+1\right)^2=1\)
Do đó, \(4x^2+y^2\ge\frac{1}{5}\) (điều phải chứng minh)
Dấu \("="\) xảy ra \(\Leftrightarrow\) \(\frac{2}{2x}=\frac{1}{y}\) \(\Leftrightarrow\) \(x=y=\frac{1}{5}\)
Bài này có 2 cách làm mình làm cách áp dụng BĐT Bunhiacopxki
Ta có 4x + y = 1 =) ( 4x + y)2 =1
=) (4x + y)2 = [ 2(2x) + y ]2 <= ( 22 +1 ) [ (2x)2 + y2 )
=) ( 4x + y )2 <= 5( 4x2 + y2 )
=) 1<= 5( 4x2 + y2 )
=) 1/5 <= 4x2 + y2
Hay 4x2 + y2 >= 1/5
K CHO MÌNH NHA
a/ \(x^2-6x+10=x^2-2.x.3+3^2+1=\left(x-3\right)^2+1\)
Với mọi x ta có :
\(\left(x-3\right)^2\ge0\)
\(\Leftrightarrow\left(x-3\right)^2+1>0\)
\(\Leftrightarrow x^2-6x+10>0\)
b/ \(x^2-4x+7=x^2-2.x.2+2^2+3=\left(x-2\right)^2+3\)
Với mọi x ta có :
\(\left(x-2\right)^2\ge0\)
\(\Leftrightarrow\left(x-2\right)^2+3\ge3\)
\(\Leftrightarrow x^2-4x+7\ge3\left(đpcm\right)\)
c/ \(x^2+x+1=x^2+2.x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Với mọi x ta có :
\(\left(x+\dfrac{1}{2}\right)^2\ge0\)
\(\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)
\(\Leftrightarrow x^2+x+1>0\left(đpcm\right)\)
d/ \(x^2+y^2+4x-6y+15=\left(x^2+4x+2^2\right)+\left(y^2-6y+3^2\right)+2=\left(x+2\right)^2+\left(y-3\right)^2+2\)
Với mọi x,y ta có :
\(\left\{{}\begin{matrix}\left(x+2\right)^2\ge0\\\left(y-3\right)^2\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left(x+2\right)^2+\left(y-3\right)^2\ge0\)
\(\Leftrightarrow\left(x+2\right)^2+\left(y-3\right)^2+2\ge0\)
\(\Leftrightarrow x^2+y^2+4x-6y+15>0\left(đpcm\right)\)
2/ Ta có :
\(\left(a+b\right)^2-4ab=a^2+2ab+b^2-4ab=a^2-2ab+b^2=\left(a-b\right)^2\)
Vậy \(\left(a-b\right)^2=\left(a+b\right)^2-4ab\left(đpcm\right)\)
3/ \(x^2+y^2=x^2+y^2+2xy-2xy=\left(x+y\right)^2-2xy\)
Mà \(x+y=7;xy=-3\)
\(\Leftrightarrow x^2+y^2=7^2-2.\left(-3\right)=49+6=55\)
another way bằng Bunhiacopski
Bất đẳng thức Bunhiacopski:\(\left(a^2+b^2\right)\left(x^2+y^2\right)\ge\left(ax+by\right)^2\)
Áp dụng, ta có:
\(\left(4x+y\right)^2=\left(2\cdot2x+1\cdot y\right)^2\le\left(2^2+1^2\right)\left(4x^2+y^2\right)=5\left(4x^2+y^2\right)\)
\(\Leftrightarrow4x^2+y^2\ge\frac{1}{5}\left(đpcm\right)\)
Ta có: 4 x + y = 1 => y = 1- 4x
Khi đó: \(4x^2+y^2=4x^2+\left(1-4x\right)^2=20x^2-8x+1\)
= \(20\left(x^2-\frac{2}{5}x+\frac{1}{25}\right)-\frac{20}{25}+1\)
= \(20\left(x-\frac{1}{5}\right)^2+\frac{1}{5}\ge\frac{1}{5}\)
Dấu "=" xảy ra <=>x = 1/5; y = 1- 4x = 1/5
2.
Ta có hằng đẳng thức : \(\left(a-b\right)^2=a^2-2ab+b^2\left(1\right)\)
Lại có \(\left(a+b\right)^2=a^2+2ab+b^2\)
\(\Rightarrow\left(a+b\right)^2-4ab=a^2+2ab-4ab+b^2\)
\(\Leftrightarrow\left(a+b\right)^2-4ab=a^2-2ab+b^2\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\left(a-b\right)^2=\left(a+b\right)^2-4ab\)( đpcm )
3.
Ta có hằng đẳng thức \(\left(x+y\right)^2=x^2+2xy+y^2\)
\(\Rightarrow x^2+y^2=\left(x+y\right)^2-2xy\)
Thay \(x+y=7\)và \(xy=-3\)vào ta được :
\(x^2+y^2=7^2-2\left(-3\right)\)
\(\Leftrightarrow x^2+y^2=49+6=55\)
Vậy ...
1.
a) Đặt \(A=x^2-6x+10\)
\(A=\left(x^2-6x+9\right)+1\)
\(A=\left(x-3\right)^2+1\)
Mà \(\left(x-3\right)^2\ge0\forall x\)
\(\Rightarrow A\ge1>0\)
Vậy ...
b) Đặt \(B=x^2-4x+7\)
\(B=\left(x^2-4x+4\right)+3\)
\(B=\left(x-2\right)^2+3\)
Mà \(\left(x-2\right)^2\ge0\forall x\)
\(\Rightarrow B\ge3\)
Vậy ...
Ta có: \(4x^2\ge x\); \(y^2\ge y\)
\(\Rightarrow4x^2+y^2\ge4x+y=1\)
\(\Rightarrow4x^2+y^2\ge1\)
\(\Rightarrow4x^2+y^2>\frac{1}{5}\)
1/ \(x^3-4x^2+4x-1=x^3-1-4x^2+4x\)
\(=\left(x-1\right)\left(x^2+x+1\right)-4x\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2-3x+1\right)\)
2/ \(\left(x+y\right)^3-x^3-y^3=x^3+3x^2y+3xy^2+y^3-x^3-y^3\)
\(=3xy\left(x+y\right)\)
chúc bn hc tốt nhé
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\left(1+4\right)\left(4x^2+y^2\right)\ge\left(4x+y\right)^2\)
\(\Rightarrow5\left(4x^2+y^2\right)\ge\left(4x+y\right)^2\)
\(\Rightarrow5\left(4x^2+y^2\right)\ge1^2=1\Rightarrow4x^2+y^2\ge\frac{1}{5}\)
Đẳng thức xảy ra khi \(x=y=\frac{1}{5}\)
giải theo kiến thức lớp 8 bạn