K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 6 2017

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\left(1+4\right)\left(4x^2+y^2\right)\ge\left(4x+y\right)^2\)

\(\Rightarrow5\left(4x^2+y^2\right)\ge\left(4x+y\right)^2\)

\(\Rightarrow5\left(4x^2+y^2\right)\ge1^2=1\Rightarrow4x^2+y^2\ge\frac{1}{5}\)

Đẳng thức xảy ra khi \(x=y=\frac{1}{5}\)

2 tháng 6 2017

giải theo kiến thức lớp 8 bạn

26 tháng 3 2016

Áp dụng bất đẳng thức Bunyakovsky cho hai bộ số  \(\left(2^2+1^2\right)\)  và  \(\left(4x^2+y^2\right)\), ta được:

\(\left(2^2+1^2\right)\left(4x^2+y^2\right)\ge\left(2.2x+1.y\right)^2\)

nên  \(5\left(4x^2+y^2\right)\ge\left(4x+1\right)^2=1\)

Do đó,   \(4x^2+y^2\ge\frac{1}{5}\)  (điều phải chứng minh)

Dấu  \("="\)  xảy ra  \(\Leftrightarrow\)  \(\frac{2}{2x}=\frac{1}{y}\)  \(\Leftrightarrow\)  \(x=y=\frac{1}{5}\)

27 tháng 4 2016

Dễ quá

27 tháng 4 2016

Bài này có 2 cách làm mình làm cách áp dụng BĐT Bunhiacopxki

Ta có  4x + y = 1 =) ( 4x + y)=1

=) (4x + y)2 = [ 2(2x)  + y ]2 <= ( 22 +1 ) [ (2x)+ y2 )

=) ( 4x + y )2 <=  5( 4x2 + y2 )

=) 1<= 5( 4x2 + y2 )

=) 1/5 <= 4x2 + y2

Hay 4x2 + y2 >= 1/5

K CHO MÌNH NHA

17 tháng 7 2018

a/ \(x^2-6x+10=x^2-2.x.3+3^2+1=\left(x-3\right)^2+1\)

Với mọi x ta có :

\(\left(x-3\right)^2\ge0\)

\(\Leftrightarrow\left(x-3\right)^2+1>0\)

\(\Leftrightarrow x^2-6x+10>0\)

b/ \(x^2-4x+7=x^2-2.x.2+2^2+3=\left(x-2\right)^2+3\)

Với mọi x ta có :

\(\left(x-2\right)^2\ge0\)

\(\Leftrightarrow\left(x-2\right)^2+3\ge3\)

\(\Leftrightarrow x^2-4x+7\ge3\left(đpcm\right)\)

c/ \(x^2+x+1=x^2+2.x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)

Với mọi x ta có :

\(\left(x+\dfrac{1}{2}\right)^2\ge0\)

\(\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)

\(\Leftrightarrow x^2+x+1>0\left(đpcm\right)\)

d/ \(x^2+y^2+4x-6y+15=\left(x^2+4x+2^2\right)+\left(y^2-6y+3^2\right)+2=\left(x+2\right)^2+\left(y-3\right)^2+2\)

Với mọi x,y ta có :

\(\left\{{}\begin{matrix}\left(x+2\right)^2\ge0\\\left(y-3\right)^2\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left(x+2\right)^2+\left(y-3\right)^2\ge0\)

\(\Leftrightarrow\left(x+2\right)^2+\left(y-3\right)^2+2\ge0\)

\(\Leftrightarrow x^2+y^2+4x-6y+15>0\left(đpcm\right)\)

17 tháng 7 2018

2/ Ta có :

\(\left(a+b\right)^2-4ab=a^2+2ab+b^2-4ab=a^2-2ab+b^2=\left(a-b\right)^2\)

Vậy \(\left(a-b\right)^2=\left(a+b\right)^2-4ab\left(đpcm\right)\)

3/ \(x^2+y^2=x^2+y^2+2xy-2xy=\left(x+y\right)^2-2xy\)

\(x+y=7;xy=-3\)

\(\Leftrightarrow x^2+y^2=7^2-2.\left(-3\right)=49+6=55\)

18 tháng 6 2020

another way bằng Bunhiacopski

Bất đẳng thức Bunhiacopski:\(\left(a^2+b^2\right)\left(x^2+y^2\right)\ge\left(ax+by\right)^2\)

Áp dụng, ta có:

\(\left(4x+y\right)^2=\left(2\cdot2x+1\cdot y\right)^2\le\left(2^2+1^2\right)\left(4x^2+y^2\right)=5\left(4x^2+y^2\right)\)

\(\Leftrightarrow4x^2+y^2\ge\frac{1}{5}\left(đpcm\right)\)

18 tháng 6 2020

Ta có: 4 x + y = 1 => y = 1- 4x 

Khi đó: \(4x^2+y^2=4x^2+\left(1-4x\right)^2=20x^2-8x+1\)

\(20\left(x^2-\frac{2}{5}x+\frac{1}{25}\right)-\frac{20}{25}+1\)

\(20\left(x-\frac{1}{5}\right)^2+\frac{1}{5}\ge\frac{1}{5}\)

Dấu "=" xảy ra <=>x = 1/5;  y = 1- 4x = 1/5 

17 tháng 7 2018

2.

Ta có hằng đẳng thức : \(\left(a-b\right)^2=a^2-2ab+b^2\left(1\right)\)

Lại có  \(\left(a+b\right)^2=a^2+2ab+b^2\)

\(\Rightarrow\left(a+b\right)^2-4ab=a^2+2ab-4ab+b^2\)

\(\Leftrightarrow\left(a+b\right)^2-4ab=a^2-2ab+b^2\left(2\right)\)

Từ (1) và (2)  \(\Rightarrow\left(a-b\right)^2=\left(a+b\right)^2-4ab\)( đpcm )

3.

Ta có hằng đẳng thức  \(\left(x+y\right)^2=x^2+2xy+y^2\)

\(\Rightarrow x^2+y^2=\left(x+y\right)^2-2xy\)

Thay  \(x+y=7\)và  \(xy=-3\)vào ta được :

\(x^2+y^2=7^2-2\left(-3\right)\)

\(\Leftrightarrow x^2+y^2=49+6=55\)

Vậy ...

17 tháng 7 2018

1. 

a) Đặt  \(A=x^2-6x+10\)

\(A=\left(x^2-6x+9\right)+1\)

\(A=\left(x-3\right)^2+1\)

Mà  \(\left(x-3\right)^2\ge0\forall x\)

\(\Rightarrow A\ge1>0\)

Vậy ...

b) Đặt \(B=x^2-4x+7\)

\(B=\left(x^2-4x+4\right)+3\)

\(B=\left(x-2\right)^2+3\)

Mà  \(\left(x-2\right)^2\ge0\forall x\)

\(\Rightarrow B\ge3\)

Vậy ...

23 tháng 10 2015

Ta có: \(4x^2\ge x\)\(y^2\ge y\)

\(\Rightarrow4x^2+y^2\ge4x+y=1\)

\(\Rightarrow4x^2+y^2\ge1\)

\(\Rightarrow4x^2+y^2>\frac{1}{5}\)

26 tháng 11 2017

Cần tìm ra gt của A là số nguyên à bạn?

4 tháng 7 2017

1/ \(x^3-4x^2+4x-1=x^3-1-4x^2+4x\)

\(=\left(x-1\right)\left(x^2+x+1\right)-4x\left(x-1\right)\)

\(=\left(x-1\right)\left(x^2-3x+1\right)\)

2/ \(\left(x+y\right)^3-x^3-y^3=x^3+3x^2y+3xy^2+y^3-x^3-y^3\)

\(=3xy\left(x+y\right)\)

chúc bn hc tốt nhé