K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a, x2+5y2+2y-4xy-3=0

\(\Leftrightarrow\left(x-2y\right)^2+\left(y+1\right)^2=4\)

Nếu \(y< -3\Rightarrow y+1< -2\Rightarrow\left(y+1\right)^2>4\Rightarrow VT>VP\)(vô lí)

\(\Rightarrow y\ge-3\Rightarrow y_{min}=-3\)

lúc đó \(\left(x+6\right)^2+4=4\Rightarrow x=-6\)

Vậy.................

5 tháng 3 2020

a) \(x^2+5y^2+2y-4xy-3=0\)

\(\Leftrightarrow\left(x^2-4xy+4y^2\right)+\left(y^2+2y+1\right)-4=0\)

\(\Leftrightarrow\left(x-2y\right)^2+\left(y+1\right)^2=4\)

Ta thấy : \(4=0+4\) là tổng hai số chính phương

Thử các giá trị \(\orbr{\begin{cases}\left(y+1\right)^2=0\\\left(y+1\right)^2=4\end{cases}}\)

Ta thấy : \(y=-3\) đạt giá trị nhỏ nhất.

Khi đó : \(x^2+5.\left(-3\right)^2+2\left(-3\right)-4x\left(-3\right)-3=0\)

\(\Leftrightarrow x=-6\)

Vậy : \(\left(x,y\right)=\left(-6,-3\right)\) với y nhỏ nhất thỏa mãn đề.

P/s : Không chắc lắm ....

NV
20 tháng 10 2019

a/

\(a^2+b^2+c^2+29ab+bc+ca=3\left(ab+bc+ca\right)\)

\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca=0\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}a-b=0\\b-c=0\\c-a=0\end{matrix}\right.\) \(\Rightarrow a=b=c\)

b/ \(a^3+b^3+c^3=\left(a+b\right)^3+c^3-3ab\left(a+b\right)\)

\(=\left(a+b+c\right)\left(\left(a+b\right)^2-c\left(a+b\right)+c^2\right)-3ab\left(a+b\right)\)

\(=-3ab\left(a+b\right)=-3ab\left(-c\right)=3abc\)

c/ Không, vì \(a=b=c\ne\) thì \(a^3+b^3+c^3=3a^3=3abc\) vẫn đúng

20 tháng 11 2019

Ta có : 

\(4m^2+m=5n^2+n\)

\(\Leftrightarrow5m^2+m=5n^2+n+m^2\)

\(\Leftrightarrow5\left(m^2-n^2\right)+\left(m-n\right)=m^2\)

\(\Leftrightarrow\left(m-n\right)\left(5m+5n+1\right)=m^2\)

\(\Rightarrow\hept{\begin{cases}m-n⋮d\\5m+5n+1⋮d\end{cases}\Rightarrow\hept{\begin{cases}m^2=\left(m-n\right)\left(5m+5n+1\right)⋮d^2\\5\left(m-n\right)\left(5m+5n+1\right)⋮d\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}m⋮d\\10m+1⋮d\end{cases}\Rightarrow1⋮d\Rightarrow d=1}\)

Vậy \(m-n,5m+5n+1\) nguyên tố cùng nhau . Mà tích của chúng là một số chính phương nên bản thân \(m-n,5m+5n+1\) cũng là số chính phương ( đpcm)

Chúc bạn học tốt !!!

1 tháng 1 2016

Ta có: x^4+y^4=a^4+b^4 
=>x^4-a^4=b^4-y^4 
=>(x^2-a^2)(x^2+a^2) = (b^2-y^2)(b^2+y^2) 
=>(x-a)(x+a)(x^2+a^2) = (b-y)(b+y)(b^2+y^2) (1) 
Ta lại có: x+y=a+b 
=>x-a=b-y (2) 
Từ (1) và (2) suy ra 
(b-y)(x+a)(x^2+a^2) - (b-y)(b+y)(b^2+y^2) = 0 
=>(b-y) [(x+a)(x^2+a^2) - (b+y)(b^2+y^2)] = 0 
Nếu b=y thì x=a, suy ra x^n+y^n=a^n+b^n 
Nếu (x+a)(x^2+a^2)-(b+y)(b^2+y^2)=0 
=>(x+a)(x^2+a^2)=(b+y)(b^2+y^2) 
=>x+a=b+y và x^2+a^2=y^2+b^2 (*) 
=>x=b+y-a (3) và x^2+a^2=y^2+b^2 (4) 
Thay (3) vào (4) ta được: 
(b+y-a)^2+a^2=y^2+b^2 
=>b^2+y^2+a^2+2by-2ab-2ay+a^2=b^2+y^2 
=>2a^2+2by-2ab-2ay=0 
=>a^2+by-ab-ay=0 
=>a(a-b)-y(a-b)=0 
=>(a-b)(a-y)=0 
=>a=b hoặc a=y 
Nếu a=b từ (*) suy ra x=y 
=> x^n+y^n=a^n+b^n
Nếu a=y từ (*) suy ra x=b 
=>x^n+y^n=a^n+b^n 
Vậy x^n+y^n=a^n+b^n 

1 tháng 1 2016

Thank bạn nhiều. Chúc bạn một năm ms vui vẻ nhé!

AH
Akai Haruma
Giáo viên
4 tháng 7 2018

Lời giải:

\(4x^3+x=12y^3+y\)

\(\Leftrightarrow 4(x^3-y^3)+(x-y)=(2y)^3\)

\(\Leftrightarrow 4(x-y)(x^2+xy+y^2)+(x-y)=(2y)^3\)

\(\Leftrightarrow (x-y)(4x^2+4xy+4y^2+1)=(2y)^3(*)\)

Giả sử $p$ là ước nguyên tố lớn nhất của $x-y$ và $4x^2+4xy+4y^2+1$

Do \(4x^2+4xy+4y^2+1\) lẻ nên $p$ lẻ.

Ta có: \(\left\{\begin{matrix} x-y\vdots p\\ 4x^2+4xy+4y^2+1\vdots p\end{matrix}\right.(1)\). Lại có $(*)$ suy ra \((2y)^3\vdots p\Rightarrow y^3\vdots p\Rightarrow y\vdots p(2)\) (vì $p$ nguyên tố lẻ)

Từ \((1);(2)\Rightarrow \left\{\begin{matrix} x\vdots p\\ y\vdots p\\ 4x^2+4xy+4y^2+1\vdots p\end{matrix}\right.\Rightarrow 1\vdots p\)

Hoàn toàn vô lý vì $p$ là số nguyên tố

Tức là giữa $x-y,4x^2+4xy+4y^2+1$ không tồn tại ước nguyên tố chung, nghĩa là chúng nguyên tố cùng nhau.

Mà tích của chúng lại là một số lập phương \((2y)^3\), do đó bản thân mỗi số $x-y$ và $4x^2+4xy+4y^2+1$ cũng là một lập phương của số nguyên

Do đó ta có đpcm.