K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2016

Ta có:\(\hept{\begin{cases}b^2=ac\\c^2=bd\end{cases}}\)\(\Rightarrow\hept{\begin{cases}\frac{b}{c}=\frac{a}{b}\\\frac{c}{d}=\frac{b}{c}\end{cases}}\)\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)

\(\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{27b^3}{27c^3}=\frac{8c^3}{8d^3}=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a}{d}\left(1\right)\)

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{a^3}{b^3}=\frac{27b^3}{27c^3}=\frac{8c^3}{8d^3}=\frac{a^3+27b^3+8c^3}{b^3+27c^3+8d^3}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\frac{a}{d}=\frac{a^3+27b^3+8c^3}{b^3+27c^3+8d^3}\left(đpcm\right)\)

16 tháng 10 2018

đề bài thiếu rồi

13 tháng 2 2019

Do \(b^2=ac;c^2=bd\)

\(\Rightarrow\frac{a}{b}=\frac{b}{c};\frac{b}{c}=\frac{c}{d}\)

\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)

\(\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a}{b}\cdot\frac{b}{c}\cdot\frac{c}{d}=\frac{a}{d}\)

Áp dụng tính chất dãy tỉ số bằng nhau,ta được:

\(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a}{d}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\left(đpcm\right)\)

8 tháng 8 2018

b^2=ac= >a/b=b/c ; c^3=bd= >b/c=c/d

=> a/b=b/c=c/d= >a^3/b^3=b^3/c^3=c^3/d^3=(a^3+b^3+c^3)/(b^3+c^3+d^3) 

mà a^3/b^3=a/b.a/b.a/b=a/b.b/c.c/d=a/b

nên (a^3+b^3+c^3)/(b^3+c^3+d^3)=a/b

14 tháng 12 2016

Giải:

Ta có: \(b^2=ac\Rightarrow\frac{a}{b}=\frac{b}{c}\)

\(c^2=bd\Rightarrow\frac{b}{c}=\frac{c}{d}\)

\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)

\(\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\) (1)

\(\frac{a^3}{b^3}=\frac{a}{b}.\frac{a}{b}.\frac{a}{b}=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a}{d}\) (2)

Từ (1) và (2) suy ra \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\left(đpcm\right)\)