K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 1 2016

bn nhấn vào đúng 0 sẽ ra đáp án

29 tháng 1 2016

neu ab=cd va a=b thi 4 so nay deu la cac so bang nhau

7 tháng 4 2016

trường hợp : ab = cd + 1

ta có a+ b = c + d

=> b.(a+b) = b(c+d) => a.b + b 2 = bc + bd mà ab = cd + 1

nên cd + 1 + b 2 = bc + bd => bc - cd + bd - b 2 = 1 => c(b - d) + b.(d - b) = 1 => (c - b)(b - d) = 1 . Vì a, b, c, d nguyên nên c - b và b - d cũng nguyên. do đó c - b = b - d = 1 hoặc c - b = b -d = -1

c - b = b - d => c + d = 2.b Mà c + d = a+ b => 2.b = a+ b => b = a => đpcm

Trường hợp 2: ab = cd - 1: tương tự 

28 tháng 3 2018

Ta có : 

\(a+b=c+d\)

\(\Rightarrow\)\(a=-b+c+d\)

Thay \(a=-b+c+d\) vào \(ab+1=cd\) ta được : 

\(\left(-b+c+d\right)b+1=cd\)

\(\Leftrightarrow\)\(-b^2+bc+bd+1=cd\)

\(\Leftrightarrow\)\(\left(-b^2+bd\right)+\left(bc-cd\right)=-1\)

\(\Leftrightarrow\)\(-b\left(b-d\right)+c\left(b-d\right)=-1\)

\(\Leftrightarrow\)\(\left(c-b\right)\left(b-d\right)=-1\)

Vì \(a,b,c,d\inℤ\) nên có 2 trường hợp : 

Trường hợp 1 : 

\(\hept{\begin{cases}c-b=1\\b-d=-1\end{cases}\Leftrightarrow\hept{\begin{cases}c=b+1\\b+1=d\end{cases}\Leftrightarrow}\hept{\begin{cases}c=b+1\\c=d\end{cases}}}\)

\(\Rightarrow\)\(c=d\)

Trường hợp 2 : 

\(\hept{\begin{cases}c-b=-1\\b-d=1\end{cases}\Leftrightarrow\hept{\begin{cases}b=c+1\\b=d+1\end{cases}}}\)

\(\Rightarrow\)\(c+1=d+1\)

\(\Rightarrow\)\(c=d\)

Vậy \(c=d\)

Chúc bạn học tốt ~ 

19 tháng 2 2023

Vì ab = cd nên \(\dfrac{a}{c}=\dfrac{d}{b}\)

Đặt \(\dfrac{a}{c}=\dfrac{d}{b}=k\) (k > 0)

=> a = ck ; d = bk

Khi đó P = an + bn + cn + dn

= (ck)n + bn + cn + (bk)n

= cn.kn + cn + bn + bn.kn

= cn(kn + 1) + bn(kn + 1)

= (cn + bn).(kn + 1) 

Dễ thấy cn + bn > 1 ; kn + 1 > 1

=> P là hợp số