\(\overrightarrow{AM}=\overrightarrow...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
30 tháng 9 2020

Lời giải:

Gọi $O$ là tâm lục giác đều. Khi đó $AD, BE, CF$ giao nhau tại trung điểm $O$ của mỗi đường.

$\overrightarrow{MA}+\overrightarrow{MC}+\overrightarrow{ME}-\overrightarrow{MB}-(\overrightarrow{MD}+\overrightarrow{MF})$

$=(\overrightarrow{MA}-\overrightarrow{MB})+(\overrightarrow{MC}-\overrightarrow{MD})+(\overrightarrow{ME}-\overrightarrow{MF})$

$=\overrightarrow{BA}+\overrightarrow{DC}+\overrightarrow{FE}$

$=\overrightarrow{CO}+\overrightarrow{OB}+\overrightarrow{BC}=\overrightarrow{CB}+\overrightarrow{BC}=\overrightarrow{0}$

Do đó:

$\overrightarrow{MA}+\overrightarrow{MC}+\overrightarrow{ME}-\overrightarrow{MB} =\overrightarrow{MD}+\overrightarrow{MF}$

Đáp án C

17 tháng 8 2020

Lời giải:

Gọi $O$ là tâm lục giác đều. Khi đó $AD, BE, CF$ giao nhau tại trung điểm $O$ của mỗi đường.

$\overrightarrow{MA}+\overrightarrow{MC}+\overrightarrow{ME}-\overrightarrow{MB}-(\overrightarrow{MD}+\overrightarrow{MF})$

$=(\overrightarrow{MA}-\overrightarrow{MB})+(\overrightarrow{MC}-\overrightarrow{MD})+(\overrightarrow{ME}-\overrightarrow{MF})$

$=\overrightarrow{BA}+\overrightarrow{DC}+\overrightarrow{FE}$

$=\overrightarrow{CO}+\overrightarrow{OB}+\overrightarrow{BC}=\overrightarrow{CB}+\overrightarrow{BC}=\overrightarrow{0}$

Do đó:

$\overrightarrow{MA}+\overrightarrow{MC}+\overrightarrow{ME}-\overrightarrow{MB} =\overrightarrow{MD}+\overrightarrow{MF}$

Đáp án C

12 tháng 5 2017

a)Giả sử điểm K thỏa mãn:
\(\overrightarrow{KA}+2\overrightarrow{KB}=\overrightarrow{CB}\)\(\Leftrightarrow\overrightarrow{KB}+\overrightarrow{BA}+2\overrightarrow{KB}=\overrightarrow{CB}\)
\(\Leftrightarrow3\overrightarrow{KB}=\overrightarrow{CB}-\overrightarrow{BA}\)
\(\Leftrightarrow\overrightarrow{KB}=\overrightarrow{CB}+\overrightarrow{AB}\).
Xác định: \(\overrightarrow{CB}+\overrightarrow{AB}\).
A B C D
Lấy điểm D sao cho B là trung điểm của DC.
\(\overrightarrow{CB}+\overrightarrow{AB}=\overrightarrow{BD}+\overrightarrow{AB}=\overrightarrow{AD}\).
Điểm K xác định sao cho : \(\overrightarrow{KB}=\overrightarrow{AD}\) hay tứ giác AKBD là hình bình hành.
A B C D K

12 tháng 5 2017

b) Gọi G là trọng tâm tam giác ABC.
Ta có \(\overrightarrow{MA}+\overrightarrow{MB}+2\overrightarrow{MC}=\overrightarrow{MG}+\overrightarrow{GA}+\overrightarrow{MG}+\overrightarrow{GB}+2\overrightarrow{MG}\)\(+2\overrightarrow{GC}\)
\(=4\overrightarrow{MG}+\left(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}\right)+\overrightarrow{GC}\)
\(=4\overrightarrow{MG}+\overrightarrow{GC}\).
Giả sử điểm M thỏa mãn:
\(\overrightarrow{MA}+\overrightarrow{MB}+2\overrightarrow{MC}=\overrightarrow{0}\Leftrightarrow4\overrightarrow{MG}+\overrightarrow{GC}=\overrightarrow{0}\)
\(\Leftrightarrow\overrightarrow{MG}=\dfrac{\overrightarrow{CG}}{4}\).
Điểm M được xác định để \(\overrightarrow{MG}=\dfrac{\overrightarrow{CG}}{4}\).
A B C G T M
Gọi T là trung điểm của AB nên \(\overrightarrow{CG}=2\overrightarrow{GT}\).
Vì vậy điểm M được xác định là trung điểm của GT.

NV
9 tháng 9 2020

a/ Gọi E là điểm đối xứng D qua A

\(\Rightarrow\overrightarrow{EA}=\overrightarrow{AD}=\overrightarrow{BC}\)

\(\left|\overrightarrow{MA}+\overrightarrow{MB}-\overrightarrow{MC}\right|=\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{CM}\right|=\left|\overrightarrow{MA}+\overrightarrow{CB}\right|\)

\(=\left|\overrightarrow{ME}+\overrightarrow{EA}+\overrightarrow{CB}\right|=\left|\overrightarrow{ME}+\overrightarrow{BC}+\overrightarrow{CB}\right|=\left|\overrightarrow{ME}\right|\)

\(\Rightarrow\left|\overrightarrow{ME}\right|=\left|\overrightarrow{MD}\right|\Rightarrow ME=MD\Rightarrow M\) nằm trên trung trực của ED

Hay quỹ tích M là đường thẳng AB

b/ Gọi O là trung điểm AC (tâm hcn), H là trung điểm BC, K là trung điểm OH

Ta có: \(\overrightarrow{MA}+\overrightarrow{MC}+\overrightarrow{MB}+\overrightarrow{MC}=2\overrightarrow{MO}+2\overrightarrow{MH}=4\overrightarrow{MK}\)

\(\Rightarrow P=4\left|\overrightarrow{MK}\right|=4MK\Rightarrow P_{min}=0\) khi M trùng K

17 tháng 5 2017

\(\overrightarrow{v}=\overrightarrow{MA}+\overrightarrow{MB}-2\overrightarrow{MC}=\overrightarrow{MA}+\overrightarrow{MB}+2\overrightarrow{CM}\)
\(=\left(\overrightarrow{CM}+\overrightarrow{MA}\right)+\left(\overrightarrow{CM}+\overrightarrow{MB}\right)=\overrightarrow{CA}+\overrightarrow{CB}\) (Không phụ thuộc vào vị trí điểm M).
A B C I K
b) Dựng hình bình hành BCAD. Theo quy tắc hình bình hành:
\(\overrightarrow{CA}+\overrightarrow{CB}=\overrightarrow{CD}\).
Vậy \(\overrightarrow{CD}=\overrightarrow{v}\).

6 tháng 8 2017

\(\overrightarrow{v}=\overrightarrow{MA}+\overrightarrow{MB}-2\overrightarrow{MC}\)

\(=2\overrightarrow{ME}-2\overrightarrow{MC}\) (E là trung điểm cạnh AB)

\(=\left(\overrightarrow{ME}-MC\right)=2\overrightarrow{CE}\)

vậy \(\overrightarrow{v}\) không phụ thuộc vị trí của điểm M

\(\overrightarrow{CD}=\overrightarrow{v}=2\overrightarrow{CE}\) thì E là trung điểm của CD

\(\Rightarrow\) ta dựng được điểm D

29 tháng 9 2019

a/ \(VT=\overrightarrow{AB}+\overrightarrow{BF}+\overrightarrow{BC}+\overrightarrow{CG}+\overrightarrow{CD}+\overrightarrow{DH}+\overrightarrow{DA}+\overrightarrow{AE}\)

\(=\left(\overrightarrow{AB}+\overrightarrow{BC}+\overrightarrow{CD}+\overrightarrow{DA}\right)+\left(\frac{1}{2}\overrightarrow{BC}+\frac{1}{2}\overrightarrow{CD}+\frac{1}{2}\overrightarrow{DA}+\frac{1}{2}\overrightarrow{AB}\right)\)

\(=\overrightarrow{0}+\frac{1}{2}.\overrightarrow{0}=\overrightarrow{0}=VP\)

b/ Câu này áp dụng luôn kq câu a

\(\overrightarrow{MF}-\overrightarrow{MA}+\overrightarrow{MG}-\overrightarrow{MB}+\overrightarrow{MH}-\overrightarrow{MC}+\overrightarrow{ME}-\overrightarrow{MD}=\overrightarrow{0}\)

chuyển mấy cái vecto kia sang vế phải là có ngay đpcm câu b

c/\(VT=\overrightarrow{AI}+\overrightarrow{IB}+\overrightarrow{AI}+\overrightarrow{IC}+\overrightarrow{AI}+\overrightarrow{ID}=3\overrightarrow{AI}+\overrightarrow{IB}+\overrightarrow{IC}+\overrightarrow{ID}\)

Để ý tới G là TĐ CD, F là TĐ BC

Theo quy tắc trung điểm

\(\Rightarrow\overrightarrow{IB}+\overrightarrow{IC}=2\overrightarrow{IF}=2\overrightarrow{HI}\)

\(\Rightarrow\overrightarrow{IB}+\overrightarrow{IC}+\overrightarrow{ID}=2\overrightarrow{HI}+\overrightarrow{ID}=\overrightarrow{HI}+\overrightarrow{HD}\)

\(\overrightarrow{HD}=\overrightarrow{AH}\Rightarrow\overrightarrow{IB}+\overrightarrow{IC}+\overrightarrow{ID}=\overrightarrow{HI}+\overrightarrow{AH}=\overrightarrow{AI}\)

Thay vào cái trên sẽ có đpcm