Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a. $2x-10-[3x-14-(4-5x)-2x]=2$
$2x-10-3x+14+(4-5x)+2x=2$
$-x-10+14+4-5x+2x=2$
$-4x+8=2$
$-4x=-6$
$x=\frac{-6}{-4}=\frac{3}{2}$
b. Đề sai. Bạn xem lại.
c.
$|x-3|=|2x+1|$
$\Rightarrow x-3=2x+1$ hoặc $x-3=-(2x+1)$
$\Rightarrow x=-4$ hoặc $x=\frac{2}{3}$
Bài 2:
a. Gọi 3 số nguyên liên tiếp là $a, a+1, a+2$
Ta có:
$a+a+1+a+2=3a+3=3(a+1)\vdots 3$ (đpcm)
b. Gọi 5 số nguyên liên tiếp là $a, a+1, a+2, a+3, a+4$
Ta có:
$a+(a+1)+(a+2)+(a+3)+(a+4)=5a+10=5(a+2)\vdots 5$ (đpcm)
c.
Tổng quát: Tổng của $n$ số nguyên liên tiếp chia hết cho $n$. với $n$ lẻ.
Thật vậy, gọi $n$ số nguyên liên tiếp là $a, a+1, a+2, ...., a+n-1$
Tổng của $n$ số nguyên liên tiếp là:
$a+(a+1)+(a+2)+....+(a+n-1)$
$=na+(1+2+3+....+n-1)$
$=na+\frac{n(n-1)}{2}$
$=n[a+\frac{n-1}{2}]$
Vì $n$ lẻ nên $\frac{n-1}{2}$ nguyên
$\Rightarrow a+\frac{n-1}{2}$ nguyên
$\Rightarrow a+(a+1)+....+(a+n-1)=n[a+\frac{n-1}{2}]\vdots n$
\(A=7.\left(x^2-5x+3\right)-x.\left(7x-35\right)-14\)
\(A=7x^2-35x+21-7x^2+35x-14\)
\(A=7\)
\(B=\left(4x-5\right).\left(x+2\right)-\left(x+5\right).\left(x-3\right)-3x^2-x\)
\(B=4x^2+8x-5x-10-x^2+3x-5x+15-3x^2-x\)
\(B=5\)
\(C=\left(6x-5\right).\left(x+8\right)-\left(3x-1\right).\left(2x+3\right)-9.\left(4x-3\right)\)
\(C=6x^2+48x-5x-40-6x^2-9x+2x+3-36x+27\)
\(C=-10\)
Học tốt
3\(x\) = 97 - 1
3\(x\) = 96
\(x\) = 96 : 3
\(x\) = 32
87 - 2\(x\) + 8 = 0
95 - 2\(x\) = 0
2\(x\) = 95
\(x\) = \(\dfrac{95}{2}\) ≠ 32
Không tồn tại \(x\) thỏa mãn đề bài.