Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: =>3M+2x^4y^4=x^4y^4
=>3M=-x^4y^4
=>M=-1/3*x^4y^4
b: x^2-2M=3x^2
=>2M=-2x^2
=>M=-x^2
c: =>M=-x^2y^3-3x^2y^3=-4x^2y^3
d: =>M=7x^2y^2-3x^2y^2=4x^2y^2
Đang onl bằng điện thoại nên mình làm sơ sơ thôi nhé :((
A = ( x2 - 3x + 9/4 ) + ( y2 - 4y + 4 ) - 5/4
= ( x - 3/2 )2 + ( y - 2 )2 - 5/4 >= -5/4
Dấu = xảy ra <=> x = 3/2 ; y = 2
Vậy ...
B = ( x2 - 2xy + y2 ) + ( y2 + 4y + 4 ) - 11
= ( x - y )2 + ( y + 2 )2 - 11 >= -11
Dấu = xảy ra <=> x = y = -2
Vậy ...
a) \(A=x^2+4y^2-3x-4y+5\)
\(=\left(x^2-3x+\frac{9}{4}\right)+\left(4y^2-4y+1\right)+\frac{7}{4}\)
\(=\left(x-\frac{3}{2}\right)^2+\left(2y-1\right)^2+\frac{7}{4}\)
Vì \(\left(x-\frac{3}{2}\right)^2\ge0\forall x\); \(\left(2y-1\right)^2\ge0\forall y\)
\(\Rightarrow\left(x-\frac{3}{2}\right)^2+\left(2y-1\right)^2\ge0\forall x,y\)
\(\Rightarrow\left(x-\frac{3}{2}\right)^2+\left(2y-1\right)^2+\frac{7}{4}\ge\frac{7}{4}\forall x,y\)
Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}x-\frac{3}{2}=0\\2y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{3}{2}\\2y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{3}{2}\\y=\frac{1}{2}\end{cases}}\)
Vậy \(minA=\frac{7}{4}\)\(\Leftrightarrow\hept{\begin{cases}x=\frac{3}{2}\\y=\frac{1}{2}\end{cases}}\)
Lời giải:
a. $=(2x)^2-2.2x.5y+(5y)^2=4x^2-20xy+25y^2$
b. $=(3x)^2+2.3x.2y+(2y)^2=9x^2+12xy+4y^2$
c. $=(4y+3x)(4y-3x)=(4y)^2-(3x)^2=16y^2-9x^2$
\(x=\frac{7+4y}{3}\Rightarrow3x^2+4y^2=3.\left(\frac{7+4y}{3}\right)^2+4y^2=\frac{\left(7+4y\right)^2}{3}+4y^2\)
\(=\frac{49+56y+16y^2+12y^2}{3}=\frac{49+56y+28y^2}{3}\)
\(=\frac{28.\left(\frac{7}{4}+2y+y^2\right)}{3}=\frac{28.\left(y^2+2y+1+\frac{3}{4}\right)}{3}=\frac{28\left(y+1\right)^2+21}{3}\)
\(\ge\frac{21}{3}=7\)
cách dễ nhất tính x theo y thế số vô làm